Abstract

We propose and experimentally demonstrate a reconfigurable mode division multiplexing (MDM) silicon photonics three-mode switch (3MS) in C-band using a 120° optical hybrid based unbalanced Mach-Zehnder interferometer (UMZI) and Ti/W metal heater phase-shifter. The novel 3MS enables reconfigurable switching of the first three transverse electric (TE) modes by exploiting the relative phase difference of the 120° hybrid. A proof-of-concept realization of this 3MS demonstrates <12.0 μs switching time and >12.3 dB switching extinction ratio at 1560 nm wavelength with 94.8 mW average heater power consumption. Simultaneous (de)multiplexing and switching of 10 Gb/s non-return-to-zero (NRZ) PRBS31 optical payload over three spatial channels experimentally demonstrates 3 ×10 Gb/s aggregated bandwidth. Open eye diagrams in all output channels with >9.6 electrical signal-to-noise ratio (SNR) exhibits reliable data transmission. The 3MS has potential applications in MDM silicon photonics interconnects for the implementation of high throughput switch matrix.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed two-mode switch for mode-division multiplexing optical networks

Yule Xiong, Rubana B. Priti, and Odile Liboiron-Ladouceur
Optica 4(9) 1098-1102 (2017)

16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies 221470 (2014).
  2. “Cisco global cloud index: Forecast and methodology, 2016–2021,” Tech. rep., Cisco Systems, Inc. (2017).
  3. C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
    [Crossref]
  4. W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.
  5. C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics 02018 (2018).
  6. J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39, 6993–6996 (2014).
    [Crossref] [PubMed]
  7. S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
    [Crossref]
  8. T. Zhou, H. Jia, J. Ding, L. Zhang, X. Fu, and L. Yang, “On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching,” Opt. Express 26, 8375–8384 (2018).
    [Crossref] [PubMed]
  9. H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, and L. Yang, “Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip,” Opt. Express 25, 20698–20707 (2017).
    [Crossref] [PubMed]
  10. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
    [Crossref]
  11. M. Ye, Y. Yu, C. Sun, and X. Zhang, “On-chip data exchange for mode division multiplexed signals,” Opt. Express 24, 528–535 (2016).
    [Crossref] [PubMed]
  12. C. Sun, Y. Yu, G. Chen, and X. Zhang, “On-chip switch for reconfigurable mode-multiplexing optical network,” Opt. Express 24, 21722–21728 (2016).
    [Crossref] [PubMed]
  13. Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
    [Crossref]
  14. W. Jiang, “Reconfigurable three-dimensional mode (de)multiplexer/switch via triple-silicon-ITO-waveguide directional coupler,” Opt. Express 26, 26257–26271 (2018).
    [Crossref] [PubMed]
  15. R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
    [Crossref]
  16. X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
    [Crossref]
  17. L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, and L. Zhang, “General architectures for on-chip optical space and mode switching,” Optica 5, 180–187 (2018).
    [Crossref]
  18. C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
    [Crossref]
  19. R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2×2 multimode switch for mode-multiplexed silicon photonics interconnects,” in 2018 Asia Communications and Photonics Conference (ACP), (2018), pp. 1–8.
  20. R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
    [Crossref]
  21. J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).
  22. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38, 1422–1424 (2013).
    [Crossref] [PubMed]
  23. W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric y junctions,” Opt. Lett. 41, 2851–2854 (2016).
    [Crossref] [PubMed]
  24. P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express 20, 5725–5741 (2012).
    [Crossref] [PubMed]
  25. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13, 615–627 (1995).
    [Crossref]
  26. C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
    [Crossref]
  27. B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
    [Crossref] [PubMed]
  28. M. L. Notte and V. M. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sensors Actuators B: Chem. 176, 994–1007 (2013).
    [Crossref]
  29. N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
    [Crossref]
  30. R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
    [Crossref]
  31. F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
    [Crossref]
  32. R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in 2016 IEEE Photonics Conference (IPC), (2016), pp. 823–824.
    [Crossref]
  33. S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
    [Crossref]
  34. Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
    [Crossref]
  35. A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
    [Crossref]
  36. C. Kachris, K. Bergman, and I. Tomkos, eds., Optical Interconnects for Future Data Center Networks (Springer-VerlagNew York, 2013).
    [Crossref]
  37. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Light. Technol. 35, 346–396 (2017).
    [Crossref]
  38. D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photonics Technol. Lett. 18, 2017–2019 (2006).
    [Crossref]

2018 (10)

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics 02018 (2018).

S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
[Crossref]

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
[Crossref]

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
[Crossref]

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, and L. Zhang, “General architectures for on-chip optical space and mode switching,” Optica 5, 180–187 (2018).
[Crossref]

T. Zhou, H. Jia, J. Ding, L. Zhang, X. Fu, and L. Yang, “On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching,” Opt. Express 26, 8375–8384 (2018).
[Crossref] [PubMed]

W. Jiang, “Reconfigurable three-dimensional mode (de)multiplexer/switch via triple-silicon-ITO-waveguide directional coupler,” Opt. Express 26, 26257–26271 (2018).
[Crossref] [PubMed]

2017 (4)

H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, and L. Yang, “Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip,” Opt. Express 25, 20698–20707 (2017).
[Crossref] [PubMed]

Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
[Crossref]

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Light. Technol. 35, 346–396 (2017).
[Crossref]

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
[Crossref]

2016 (4)

2015 (5)

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
[Crossref]

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
[Crossref]

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

2014 (2)

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies 221470 (2014).

J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39, 6993–6996 (2014).
[Crossref] [PubMed]

2013 (3)

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38, 1422–1424 (2013).
[Crossref] [PubMed]

C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
[Crossref]

M. L. Notte and V. M. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sensors Actuators B: Chem. 176, 994–1007 (2013).
[Crossref]

2012 (1)

2006 (1)

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photonics Technol. Lett. 18, 2017–2019 (2006).
[Crossref]

1999 (1)

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13, 615–627 (1995).
[Crossref]

1994 (1)

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Aflatouni, F.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

An, X.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

Avgerinou, M. D.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies 221470 (2014).

Baehr-Jones, T.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

Bazargani, H. P.

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
[Crossref]

Bergman, K.

Bertoldi, P.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies 221470 (2014).

Birbeck, J. C. H.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Cardenas, J.

Castellazzi, L.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies 221470 (2014).

Cesar, J.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Chen, C. P.

Chen, G.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “On-chip switch for reconfigurable mode-multiplexing optical network,” Opt. Express 24, 21722–21728 (2016).
[Crossref] [PubMed]

Chen, K.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
[Crossref]

Chen, S.

Chen, W.

Chen, X.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

Chiang, K. S.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
[Crossref]

Dai, D.

S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
[Crossref]

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics 02018 (2018).

J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett. 39, 6993–6996 (2014).
[Crossref] [PubMed]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38, 1422–1424 (2013).
[Crossref] [PubMed]

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photonics Technol. Lett. 18, 2017–2019 (2006).
[Crossref]

Dai, T.

Dargie, W.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

de Magalhães, F. G.

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

Ding, J.

Ding, R.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

Driessen, A.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

Ellinger, F.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

Fu, X.

Gierl, C.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

He, S.

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photonics Technol. Lett. 18, 2017–2019 (2006).
[Crossref]

Heaton, J. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Henker, R.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

Hessel, F.

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

Hilton, K. P.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
[Crossref]

Hochberg, M.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

Hu, Y.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Jenkins, R. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Jia, H.

Jiang, W.

Jiang, X.

Khokhar, A. Z.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Kögel, B.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
[Crossref]

Küppers, F.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Lagali, N. S.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

Lallas, E. N.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Le, Q. T.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Le, T. T.

C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
[Crossref]

Leuthold, J.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Li, C.

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics 02018 (2018).

Li, Y.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

Liboiron-Ladouceur, O.

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
[Crossref]

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
[Crossref]

Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
[Crossref]

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in 2016 IEEE Photonics Conference (IPC), (2016), pp. 823–824.
[Crossref]

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2×2 multimode switch for mode-multiplexed silicon photonics interconnects,” in 2018 Asia Communications and Photonics Conference (ACP), (2018), pp. 1–8.

Lipson, M.

Liu, D.

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics 02018 (2018).

Liu, Y.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

MacDonald, R. I.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

Malekizandi, M.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Mashanovich, G. Z.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Light. Technol. 35, 346–396 (2017).
[Crossref]

Molina-Fernández, I.

Moscoso-Mártir, A.

Nedeljkovic, M.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Neumann, N.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Neumeyr, C.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Nicolescu, G.

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

Nikdast, M.

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

Notte, M. L.

M. L. Notte and V. M. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sensors Actuators B: Chem. 176, 994–1007 (2013).
[Crossref]

Offrein, B. J.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Ortega-Moñux, A.

Ortsiefer, M.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Paiam, M. R.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

Parker, J. T.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Passaro, V. M.

M. L. Notte and V. M. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sensors Actuators B: Chem. 176, 994–1007 (2013).
[Crossref]

Passaro, V. M. N.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Paul, S.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13, 615–627 (1995).
[Crossref]

Plettemeier, D.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Priti, R.

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

Priti, R. B.

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
[Crossref]

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
[Crossref]

Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
[Crossref]

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2×2 multimode switch for mode-multiplexed silicon photonics interconnects,” in 2018 Asia Communications and Photonics Conference (ACP), (2018), pp. 1–8.

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in 2016 IEEE Photonics Conference (IPC), (2016), pp. 823–824.
[Crossref]

Qiu, J.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

Reed, G. T.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

Reyes-Iglesias, P. J.

Reynolds, S. A.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Schares, L.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Schoeniger, D.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

Schwetman, H.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
[Crossref]

Shi, Y.

Shokraneh, F.

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2×2 multimode switch for mode-multiplexed silicon photonics interconnects,” in 2018 Asia Communications and Photonics Conference (ACP), (2018), pp. 1–8.

Smith, G. W.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13, 615–627 (1995).
[Crossref]

Stern, B.

Sun, C.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

M. Ye, Y. Yu, C. Sun, and X. Zhang, “On-chip data exchange for mode division multiplexed signals,” Opt. Express 24, 528–535 (2016).
[Crossref] [PubMed]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “On-chip switch for reconfigurable mode-multiplexing optical network,” Opt. Express 24, 21722–21728 (2016).
[Crossref] [PubMed]

Szilagyi, L.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

Thomson, D. J.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

Thraskias, C. A.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Tian, Y.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

Tomkos, I.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

Tran, D. H.

C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
[Crossref]

Tran, T. A.

C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
[Crossref]

Troia, B.

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Truong, C. D.

C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
[Crossref]

Tzuang, L. D.

Wang, G.

Wang, J.

Wang, L.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
[Crossref]

Wang, P.

Wang, S.

S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
[Crossref]

Wang, Y.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

Wight, D. R.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Worhoff, K.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

Wu, H.

S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
[Crossref]

Wu, J.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

Wu, W.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

Xiong, Y.

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
[Crossref]

Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
[Crossref]

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in 2016 IEEE Photonics Conference (IPC), (2016), pp. 823–824.
[Crossref]

Xuan, Z.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

Yang, J.

Yang, L.

Yang, S.

Yang, T.

Ye, M.

Yu, Y.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

M. Ye, Y. Yu, C. Sun, and X. Zhang, “On-chip data exchange for mode division multiplexed signals,” Opt. Express 24, 528–535 (2016).
[Crossref] [PubMed]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “On-chip switch for reconfigurable mode-multiplexing optical network,” Opt. Express 24, 21722–21728 (2016).
[Crossref] [PubMed]

Zhang, D.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

Zhang, L.

Zhang, M.

S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
[Crossref]

Zhang, X.

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

M. Ye, Y. Yu, C. Sun, and X. Zhang, “On-chip data exchange for mode division multiplexed signals,” Opt. Express 24, 528–535 (2016).
[Crossref] [PubMed]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “On-chip switch for reconfigurable mode-multiplexing optical network,” Opt. Express 24, 21722–21728 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zheng, X.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
[Crossref]

Zhou, L.

Zhou, T.

Zhu, X.

Zi, X.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
[Crossref]

Appl. Phys. Lett. (1)

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1 ×N and N×N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994).
[Crossref]

Energies (1)

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies 221470 (2014).

IEEE Commun. Lett. (1)

F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur, and G. Nicolescu, “Design and modelling of a low-latency centralized controller for optical integrated networks,” IEEE Commun. Lett. 20, 462–465 (2016).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surv. Tutorials 20, 2758–2783 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
[Crossref]

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm mems vcsel,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Wang, H. Wu, M. Zhang, and D. Dai, “A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon,” IEEE Photonics Technol. Lett. 30, 1194–1197 (2018).
[Crossref]

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30, 618–621 (2018).
[Crossref]

D. Dai and S. He, “Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides,” IEEE Photonics Technol. Lett. 18, 2017–2019 (2006).
[Crossref]

IEEE Transactions on Microw. Theory Tech. (1)

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Transactions on Microw. Theory Tech. 66, 589–595 (2018).
[Crossref]

J. Light. Technol. (4)

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Light. Technol. 33, 889–900 (2015).
[Crossref]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Light. Technol. 17, 2542–2550 (1999).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13, 615–627 (1995).
[Crossref]

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Light. Technol. 35, 346–396 (2017).
[Crossref]

Nanophotonics (2)

C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, and G. T. Reed, “De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing,” Nanophotonics 7, 1571–1580 (2018).
[Crossref]

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics 02018 (2018).

Opt. Commun. (1)

C. D. Truong, D. H. Tran, T. A. Tran, and T. T. Le, “3×3 multimode interference optical switches using electro-optic effects as phase shifters,” Opt. Commun. 292, 78–83 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Optica (3)

Sensors (1)

B. Troia, A. Z. Khokhar, M. Nedeljkovic, S. A. Reynolds, Y. Hu, G. Z. Mashanovich, and V. M. N. Passaro, “Design procedure and fabrication of reproducible silicon Vernier devices for high-performance refractive index sensing,” Sensors 15, 13548–13567 (2015).
[Crossref] [PubMed]

Sensors Actuators B: Chem. (1)

M. L. Notte and V. M. Passaro, “Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sensors Actuators B: Chem. 176, 994–1007 (2013).
[Crossref]

tIEEE Photonics J. (1)

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” tIEEE Photonics J. 7, 1–8 (2015).

tOpt. Lett. (1)

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” tOpt. Lett. 42, 4131–4134 (2017).
[Crossref]

Other (5)

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in 2017 26th International Conference on Computer Communication and Networks (ICCCN), (2017), pp. 1–8.

“Cisco global cloud index: Forecast and methodology, 2016–2021,” Tech. rep., Cisco Systems, Inc. (2017).

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2×2 multimode switch for mode-multiplexed silicon photonics interconnects,” in 2018 Asia Communications and Photonics Conference (ACP), (2018), pp. 1–8.

C. Kachris, K. Bergman, and I. Tomkos, eds., Optical Interconnects for Future Data Center Networks (Springer-VerlagNew York, 2013).
[Crossref]

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in 2016 IEEE Photonics Conference (IPC), (2016), pp. 823–824.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Cross-section of the single-mode (TE0), and multimode (TE1, and TE2) waveguides with Ti/W metal heater phase-shifter. The heater is placed 2.0 μm over the single-mode waveguide; (b) simulated effective refractive indices for the first four TE modes showing the simulated electric field for each mode.
Fig. 2
Fig. 2 2D schematic of the three-mode switch (3MS) with three multimode inputs denoted as TE0-in, TE1-in0, and TE2-in; and three single mode outputs denoted as Out1, Out2, and Out3. the input ports of MMI-B (120° hybrid) are denoted as I1, I2 and I3, and its output ports are denoted as O1, O2 and O3.
Fig. 3
Fig. 3 Simulated electric fields of the MMI-A (left) and MMI-B (right) at 1550 nm. The top (a, b), middle (c, d) and bottom (e, f) images represent the propagation of TE0, TE1 and TE2 modes, respectively.
Fig. 4
Fig. 4 Simulated optical transmission (left) and relative phase difference in the output ports of the 120°optical hybrid (MMI-B and MMI-C) as a function of MMI length. The 2D schematic of the MMI is shown above the transmission plot.
Fig. 5
Fig. 5 Simulated phase-matrix of the 3×3 balanced MZI showing optical transmission for the inputs (I1, I2 and I3) to outputs (Out1, Out2 and Out3) as a function of the combined phase-shifts of the PS-2a and the PS-2b phase-shifters. The schematic of the 3×3 MZI is shown above.
Fig. 6
Fig. 6 Simulated phase-matrix of the 3×3 unbalanced MZI (UMZI) showing optical transmission for the inputs (I1, I2 and I3) to outputs (Out1, Out2 and Out3) as a function of the combined phase-shifts of the PS-2a and the PS-2b phase-shifters. The schematic of the 3×3 UMZI is shown above.
Fig. 7
Fig. 7 Solutions to the UMZI transfer matrix as a function of the combined phase shifts of PS-2a and PS-2b phase-shifters showing optical transmission and switching in all three output ports for (a) the I2 input port (TE0-in and TE2-in modes), and (b) the (I1+I3) input ports (TE1-in mode). The phase condition for the optimal transmission in each case is delimited by a black dotted line.
Fig. 8
Fig. 8 (a) Optical micrograph of the fabricated 3MS showing the complete device footprint excluding electrical pads; (b) experimental setup for the high-speed data transmission measurement for the 3MS. The optical and the electrical connections are shown as black and blue lines, respectively. PC: polarization controller; MZI: Mach-Zehnder interferometer modulator, EDFA: Erbium doped fiber amplifier, DUT: device under test, BPF: band-pass filter, PD: photodetector, RTO: real-time oscilloscope, DCA: digital communication analyzer, CLK: clock synthesizer, PPG: pulse pattern generator, NRZ: non-return-to-zero data signal.
Fig. 9
Fig. 9 (a) 2D schematic of the ADC based 3-mode (de)multiplexer; the normalized optical transmissions of this (de)multiplexer as a function of wavelength are shown in (b) for the TE0 mode, in (c) for the TE1 mode and in (d) for the TE2 mode.
Fig. 10
Fig. 10 Normalized optical transmission as a function of wavelength showing reconfigurable switching between output ports for (a–b) TE0-in, (c–d) TE1-in and (e–f) TE2-in input modes. The applied bias voltages in each phase-shifter are shown next to each transmission spectra.
Fig. 11
Fig. 11 Measured static (left) and dynamic (middle) switching of the 3MS for (a–b) TE0-in, (c–d) TE1-in and (e–f) TE2-in input modes. The corresponding eye diagrams (right) with recorded electrical SNR and peak-to-peak voltage are shown next to each switching response.

Tables (2)

Tables Icon

Table 1 Phase-symmetry in the 3×3 balanced MZI

Tables Icon

Table 2 Estimated power budget for the 3MS at 3×10 Gb/s aggregated bandwidth

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ rs = π 4 N ( s 1 ) ( 2 N + r s ) + π for r + s even
φ rs = π 4 N ( r + s 1 ) ( 2 N r s + 1 ) for r + s odd
L MMI = M P ( 3 L π )
U out = U Φ U U I
Δ φ = 2 π n eff λ Δ L
U out = U Φ U U I
Φ = Φ ± Δ φ

Metrics