Abstract

Non-contact printing methods such as inkjet, electro hydrodynamic, and aerosol printing have attracted attention for their precise deposition of functional materials that are needed in printed electronics, optoelectronics, photonics, biotechnology, and microfluidics. In this article, we demonstrate printing of tapered optical waveguides with losses of 0.61 ± 0.26 dB/cm, with the best performing structure achieving 0.19 dB/cm. Such continuous features are indispensable for successfully printing functional patterns, but they are often corrupted by capillary forces. The proposed inkjet printing method uses these forces to align liquid bridges into continuous features, enabling the printing of smooth lines on substrates with arbitrary contact angles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler

Xiaohui Lin, Amir Hosseini, Xinyuan Dou, Harish Subbaraman, and Ray T. Chen
Opt. Express 21(1) 60-69 (2013)

Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

Armin Hochreiner, Johannes Bauer-Marschallinger, Peter Burgholzer, Bernhard Jakoby, and Thomas Berer
Biomed. Opt. Express 4(11) 2322-2331 (2013)

Non-contact sub-nanometer optical repositioning using femtosecond lasers

Yves Bellouard
Opt. Express 23(22) 29258-29267 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
    [Crossref] [PubMed]
  2. J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
    [Crossref] [PubMed]
  3. Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
    [Crossref] [PubMed]
  4. Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
    [Crossref] [PubMed]
  5. L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
    [Crossref]
  6. C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
    [Crossref] [PubMed]
  7. S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
    [Crossref] [PubMed]
  8. Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
    [Crossref] [PubMed]
  9. W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
    [Crossref] [PubMed]
  10. I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Fernández, “Transition, radiation and propagation loss in polymer multimode waveguide bends,” Opt. Express 15(2), 669–679 (2007).
    [Crossref] [PubMed]
  11. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
  12. J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
    [Crossref] [PubMed]
  13. A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
    [Crossref] [PubMed]
  14. S. H. Davis, “Moving contact lines and rivulet instabilities. Part 1. The static rivulet,” J. Fluid Mech. 98(2), 225–242 (1980).
    [Crossref]
  15. J. Stringer and B. Derby, “Formation and stability of lines produced by inkjet printing,” Langmuir 26(12), 10365–10372 (2010).
    [Crossref] [PubMed]
  16. P. C. Duineveld, “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate,” J. Fluid Mech. 477, 175–200 (2003).
    [Crossref]
  17. M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
    [Crossref]
  18. S. Schiaffino and A. A. Sonin, “Formation and stability of liquid and molten beads on a solid surface,” J. Fluid Mech. 343, 95–110 (1997).
    [Crossref]
  19. D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
    [Crossref] [PubMed]
  20. D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
    [Crossref] [PubMed]
  21. L. Gao and T. J. McCarthy, “Contact angle hysteresis explained,” Langmuir 22(14), 6234–6237 (2006).
    [Crossref] [PubMed]
  22. T. P. Farmer and J. C. Bird, “Asymmetric capillary bridges between contacting spheres,” J. Colloid Interface Sci. 454, 192–199 (2015).
    [Crossref] [PubMed]
  23. K. A. Brakke, “The Surface Evolver,” Exp. Math. 1(2), 141–165 (1992).
    [Crossref]

2017 (2)

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

2016 (3)

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
[Crossref] [PubMed]

J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
[Crossref] [PubMed]

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

2015 (3)

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

T. P. Farmer and J. C. Bird, “Asymmetric capillary bridges between contacting spheres,” J. Colloid Interface Sci. 454, 192–199 (2015).
[Crossref] [PubMed]

2014 (1)

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

2013 (1)

M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
[Crossref]

2010 (2)

J. Stringer and B. Derby, “Formation and stability of lines produced by inkjet printing,” Langmuir 26(12), 10365–10372 (2010).
[Crossref] [PubMed]

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

2008 (2)

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[Crossref] [PubMed]

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

2007 (3)

Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
[Crossref] [PubMed]

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Fernández, “Transition, radiation and propagation loss in polymer multimode waveguide bends,” Opt. Express 15(2), 669–679 (2007).
[Crossref] [PubMed]

2006 (1)

L. Gao and T. J. McCarthy, “Contact angle hysteresis explained,” Langmuir 22(14), 6234–6237 (2006).
[Crossref] [PubMed]

2003 (1)

P. C. Duineveld, “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate,” J. Fluid Mech. 477, 175–200 (2003).
[Crossref]

1997 (1)

S. Schiaffino and A. A. Sonin, “Formation and stability of liquid and molten beads on a solid surface,” J. Fluid Mech. 343, 95–110 (1997).
[Crossref]

1992 (1)

K. A. Brakke, “The Surface Evolver,” Exp. Math. 1(2), 141–165 (1992).
[Crossref]

1980 (1)

S. H. Davis, “Moving contact lines and rivulet instabilities. Part 1. The static rivulet,” J. Fluid Mech. 98(2), 225–242 (1980).
[Crossref]

Adair, K.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Alamán, J.

J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
[Crossref] [PubMed]

Alicante, R.

J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
[Crossref] [PubMed]

Alleyne, A. G.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

An, J.

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

Atala, A.

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

Barton, K.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Bhakta, A. J.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Bird, J. C.

T. P. Farmer and J. C. Bird, “Asymmetric capillary bridges between contacting spheres,” J. Colloid Interface Sci. 454, 192–199 (2015).
[Crossref] [PubMed]

Brakke, K. A.

K. A. Brakke, “The Surface Evolver,” Exp. Math. 1(2), 141–165 (1992).
[Crossref]

Branson, E. D.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Brinker, C. J.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Caironi, M.

Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
[Crossref] [PubMed]

Calvert, P.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Cesarano, J.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Chandra, S.

M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
[Crossref]

Cook, B. S.

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
[Crossref] [PubMed]

Davis, S. H.

S. H. Davis, “Moving contact lines and rivulet instabilities. Part 1. The static rivulet,” J. Fluid Mech. 98(2), 225–242 (1980).
[Crossref]

Derby, B.

J. Stringer and B. Derby, “Formation and stability of lines produced by inkjet printing,” Langmuir 26(12), 10365–10372 (2010).
[Crossref] [PubMed]

Dong, C.-H.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Dong, Z.

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

Du, H.

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

Duineveld, P. C.

P. C. Duineveld, “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate,” J. Fluid Mech. 477, 175–200 (2003).
[Crossref]

Fang, Y.

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
[Crossref] [PubMed]

Farmer, T. P.

T. P. Farmer and J. C. Bird, “Asymmetric capillary bridges between contacting spheres,” J. Colloid Interface Sci. 454, 192–199 (2015).
[Crossref] [PubMed]

Fernández, F. A.

Ferreira, P. M.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Gao, L.

L. Gao and T. J. McCarthy, “Contact angle hysteresis explained,” Langmuir 22(14), 6234–6237 (2006).
[Crossref] [PubMed]

Georgiadis, J. G.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Griesser, T.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Guo, G.-C.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

Hardy, M.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Jiang, Y.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Kang, H.

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

Kang, S. J.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Kim, N. Y.

M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
[Crossref]

Kratzer, M.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Krawczyk, K. K.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Lee, C. Y.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Lee, M. W.

M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
[Crossref]

Li, F.

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

Li, L.

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

Li, P.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Liu, Y.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

McCarthy, T. J.

L. Gao and T. J. McCarthy, “Contact angle hysteresis explained,” Langmuir 22(14), 6234–6237 (2006).
[Crossref] [PubMed]

Morris, S. J. S.

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

Moser, A.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Mukhopadhyay, D. K.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Murphy, S. V.

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

Noh, Y.-Y.

Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
[Crossref] [PubMed]

Pang, J.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Papakonstantinou, I.

Park, J. U.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Peña, J. I.

J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
[Crossref] [PubMed]

Rogers, J. A.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Samusjew, A.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Sánchez-Somolinos, C.

J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
[Crossref] [PubMed]

Schiaffino, S.

S. Schiaffino and A. A. Sonin, “Formation and stability of liquid and molten beads on a solid surface,” J. Fluid Mech. 343, 95–110 (1997).
[Crossref]

Selviah, D. R.

Sirringhaus, H.

Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
[Crossref] [PubMed]

Smith, B.

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

Soltman, D.

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[Crossref] [PubMed]

Song, Y.

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

Sonin, A. A.

S. Schiaffino and A. A. Sonin, “Formation and stability of liquid and molten beads on a solid surface,” J. Fluid Mech. 343, 95–110 (1997).
[Crossref]

Strano, M. S.

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Stringer, J.

J. Stringer and B. Derby, “Formation and stability of lines produced by inkjet printing,” Langmuir 26(12), 10365–10372 (2010).
[Crossref] [PubMed]

Stuecker, J. N.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Su, W.

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
[Crossref] [PubMed]

Subramanian, V.

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[Crossref] [PubMed]

Sutton, D.

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Teichert, C.

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Tentzeris, M. M.

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
[Crossref] [PubMed]

Tran, V. T.

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

Wang, H.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Wang, K.

Wei, C.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Wei, Y.

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

Wu, L.

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

Yao, J.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Yoon, S. S.

M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
[Crossref]

Zhan, Z.

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Zhao, N.

Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
[Crossref] [PubMed]

Zhao, Y.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Zhao, Y. S.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Zhou, H.

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

Zou, C.-L.

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

A. Samusjew, M. Kratzer, A. Moser, C. Teichert, K. K. Krawczyk, and T. Griesser, “Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns,” ACS Appl. Mater. Interfaces 9(5), 4941–4947 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Wu, Z. Dong, F. Li, H. Zhou, and Y. Song, “Emerging progress of inkjet technology in printing optical materials,” Adv. Opt. Mater. 4(12), 1915–1932 (2016).
[Crossref]

Exp. Math. (1)

K. A. Brakke, “The Surface Evolver,” Exp. Math. 1(2), 141–165 (1992).
[Crossref]

Int. J. Multiph. Flow (1)

M. W. Lee, N. Y. Kim, S. Chandra, and S. S. Yoon, “Coalescence of sessile droplets of varying viscosities for line printing,” Int. J. Multiph. Flow 56, 138–148 (2013).
[Crossref]

J. Colloid Interface Sci. (1)

T. P. Farmer and J. C. Bird, “Asymmetric capillary bridges between contacting spheres,” J. Colloid Interface Sci. 454, 192–199 (2015).
[Crossref] [PubMed]

J. Fluid Mech. (3)

P. C. Duineveld, “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate,” J. Fluid Mech. 477, 175–200 (2003).
[Crossref]

S. Schiaffino and A. A. Sonin, “Formation and stability of liquid and molten beads on a solid surface,” J. Fluid Mech. 343, 95–110 (1997).
[Crossref]

S. H. Davis, “Moving contact lines and rivulet instabilities. Part 1. The static rivulet,” J. Fluid Mech. 98(2), 225–242 (1980).
[Crossref]

Lab Chip (1)

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, “Inkjet print microchannels based on a liquid template,” Lab Chip 15(7), 1759–1764 (2015).
[Crossref] [PubMed]

Langmuir (4)

J. Stringer and B. Derby, “Formation and stability of lines produced by inkjet printing,” Langmuir 26(12), 10365–10372 (2010).
[Crossref] [PubMed]

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[Crossref] [PubMed]

D. Soltman, B. Smith, H. Kang, S. J. S. Morris, and V. Subramanian, “Methodology for inkjet printing of partially wetting films,” Langmuir 26(19), 15686–15693 (2010).
[Crossref] [PubMed]

L. Gao and T. J. McCarthy, “Contact angle hysteresis explained,” Langmuir 22(14), 6234–6237 (2006).
[Crossref] [PubMed]

Materials (Basel) (1)

J. Alamán, R. Alicante, J. I. Peña, and C. Sánchez-Somolinos, “Inkjet printing of functional materials for optical and photonic applications,” Materials (Basel) 9(11), 910 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Z. Zhan, J. An, Y. Wei, V. T. Tran, and H. Du, “Inkjet-printed optoelectronics,” Nanoscale 9(3), 965–993 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nat. Mater. 6(10), 782–789 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nat. Nanotechnol. 2(12), 784–789 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Sci. Adv. (1)

C. Zhang, C.-L. Zou, Y. Zhao, C.-H. Dong, C. Wei, H. Wang, Y. Liu, G.-C. Guo, J. Yao, and Y. S. Zhao, “Organic printed photonics: From microring lasers to integrated circuits,” Sci. Adv. 1(8), e1500257 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, “Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications,” Sci. Rep. 6(1), 35111 (2016).
[Crossref] [PubMed]

Small (1)

J. Pang, J. N. Stuecker, Y. Jiang, A. J. Bhakta, E. D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, and C. J. Brinker, “Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks,” Small 4(7), 982–989 (2008).
[Crossref] [PubMed]

Other (1)

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Printing method. (a) Subsequent droplet deposition leads to self-aligned capillary bridges and allows the assembling of complex. (b) Capillary bridges (blue) between two and more pinning caps (white). The surfaces were calculated with Surface Evolver.
Fig. 2
Fig. 2 Comparison of printed features (a-g) as printed without capillary bridges, (h-n) as theoretically calculated by assembling the building blocks from Fig. 1(b) and (o-u) printed with capillary bridges. Scale bars are 200 μm.
Fig. 3
Fig. 3 Optical Characterization. (a) Optical power attenuation along printed, straight, defect free optical waveguides for light at a wavelength of 650 nm. The inset photograph shows the sliding prism characterization setup. For visibility of the waveguide any shielding are removed from the detector. The other insets show the best and the worst performing waveguides. Scale bars are 200 μm. (b) Optical power loss across defects. The insets show the corresponding introduced bulges, where 0.8 dB are lost through scattering. Scale bars are 200 μm. (c) Photograph of an all printed chip integrating optical, electrical and microfluidic components on a flexible foil. The inset shows the chip with coupled red laser light, an arrow indicates the outcoupling into the microfluidic channel filled with blue colored sucrose solution.

Metrics