Abstract

We achieved a record capacity of 7.68 Tbit/s in a single-channel OTDM transmission with a 9.7 bit/s/Hz spectral efficiency, where a polarization-multiplexed 640 Gbaud, 64 QAM coherent Nyquist pulse has been transmitted over 150 km. In this scheme, a 1.39 ps optical Nyquist pulse with an OSNR of 53 dB at a 0.1 nm resolution was generated by combining a mode-locked laser and a highly nonlinear fiber and used at both the transmitter and receiver. Phase synchronization was achieved between these pulse sources with an advanced optical phase-locked loop based on the higher harmonics of the mode-locked laser mode. In addition, we suppressed a nonlinear phase rotation at an EDFA in the transmitter by broadening the pulse width with second-order dispersion and recompressed it to the original pulse width before a 150 km transmission link. We succeeded in a bit error rate below 2 x 10−2 for all tributaries.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz

Junpei Nitta, Masato Yoshida, Kosuke Kimura, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 25(13) 15199-15207 (2017)

Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz

Masato Yoshida, Kosuke Kimura, Taro Iwaya, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 27(20) 28952-28967 (2019)

Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz

David Odeke Otuya, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 22(20) 23776-23785 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Yamazaki, A. Sano, M. Nagatani, and Y. Miyamoto, “Single-carrier 1-Tb/s PDM-16QAM transmission using high-speed InP MUX-DACs and an integrated OTDM modulator,” Opt. Express 23(10), 12866–12873 (2015).
    [Crossref] [PubMed]
  2. K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proceedings of Optical Fiber Conference (OFC, 2017), Th5B.5.
    [Crossref]
  3. H. G. Weber and M. Nakazawa, Ultrahigh-Speed Optical Transmission Technology (Springer, 2007).
  4. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
    [Crossref]
  5. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
    [Crossref]
  6. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  7. H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21(17), 20313–20321 (2013).
    [Crossref] [PubMed]
  8. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2013), CTh5D.5.
    [Crossref]
  9. D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” Opt. Express 24(26), 29682–29690 (2016).
    [Crossref] [PubMed]
  10. E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” in Proceedings of the European Conference on Optical Communication (ECOC, 2011), We.8.B.5.
    [Crossref]
  11. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.
  12. D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
    [Crossref]
  13. J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
    [Crossref] [PubMed]
  14. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [Crossref] [PubMed]
  15. K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “A new optical phase-locked system between ultrashort pulses for 640 Gbaud Nyquist OTDM coherent QAM transmission,” in Proceedings of the European Conference on Optical Communication (ECOC, 2017), M.1.F.2.
    [Crossref]
  16. M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
    [Crossref]
  17. M. Nakazawa and M. Yoshida, “Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique,” Opt. Lett. 33(10), 1059–1061 (2008).
    [Crossref] [PubMed]
  18. M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
    [Crossref] [PubMed]
  19. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of Optical Fiber Conference (OFC, 2006), OTuF2.
    [Crossref]
  20. K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
    [Crossref]
  21. M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
    [Crossref]
  22. K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
    [Crossref]
  23. K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

2015 (1)

2014 (1)

2013 (1)

2012 (1)

2010 (1)

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

2008 (1)

2007 (3)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

2006 (1)

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

1994 (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Boerner, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Ferber, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Fischer, J. K.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Futami, F.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Guan, P.

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

Harako, K.

Hirooka, T.

Hongo, J.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

Inoue, T.

Izutsu, M.

Kasai, K.

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref] [PubMed]

D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
[Crossref]

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref] [PubMed]

K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
[Crossref] [PubMed]

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

Kawanishi, T.

Kimura, K.

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Kroh, M.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Kurosu, T.

Ludwig, R.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Marembert, V.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Miyamoto, Y.

Nagatani, M.

Nakazawa, M.

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref] [PubMed]

D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
[Crossref]

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref] [PubMed]

D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” Opt. Express 24(26), 29682–29690 (2016).
[Crossref] [PubMed]

K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

M. Nakazawa and M. Yoshida, “Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique,” Opt. Lett. 33(10), 1059–1061 (2008).
[Crossref] [PubMed]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Namiki, S.

Nitta, J.

Nölle, M.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Omiya, T.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

Otuya, D. O.

Palushani, E.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Richter, T.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Ruan, P.

Sakamoto, T.

Sano, A.

Schmidt-Langhorst, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Schubert, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

Suzuki, D.

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Tan, H. N.

Watanabe, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Weber, H. G.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Yamazaki, H.

Yoshida, E.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

Yoshida, K.

Yoshida, M.

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref] [PubMed]

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref] [PubMed]

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

M. Nakazawa and M. Yoshida, “Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique,” Opt. Lett. 33(10), 1059–1061 (2008).
[Crossref] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

Electron. Lett. (3)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[Crossref]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium-doped fiber ring laser,” Electron. Lett. 30(19), 1603–1605 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser,” IEEE J. Quantum Electron. 43(8), 704–708 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

IEICE Electron. Express (1)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (7)

M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
[Crossref] [PubMed]

D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” Opt. Express 24(26), 29682–29690 (2016).
[Crossref] [PubMed]

J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz,” Opt. Express 25(13), 15199–15207 (2017).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21(17), 20313–20321 (2013).
[Crossref] [PubMed]

K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
[Crossref] [PubMed]

H. Yamazaki, A. Sano, M. Nagatani, and Y. Miyamoto, “Single-carrier 1-Tb/s PDM-16QAM transmission using high-speed InP MUX-DACs and an integrated OTDM modulator,” Opt. Express 23(10), 12866–12873 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (7)

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of Optical Fiber Conference (OFC, 2006), OTuF2.
[Crossref]

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proceedings of Optical Fiber Conference (OFC, 2017), Th5B.5.
[Crossref]

H. G. Weber and M. Nakazawa, Ultrahigh-Speed Optical Transmission Technology (Springer, 2007).

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nölle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” in Proceedings of the European Conference on Optical Communication (ECOC, 2011), We.8.B.5.
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Proceedings of Optical Fiber Conference (OFC, 2011), PDP-A9.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2013), CTh5D.5.
[Crossref]

K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “A new optical phase-locked system between ultrashort pulses for 640 Gbaud Nyquist OTDM coherent QAM transmission,” in Proceedings of the European Conference on Optical Communication (ECOC, 2017), M.1.F.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Two types of Nyquist pulse sources. (a) A conventional pulse source with a CW laser and an optical comb generator, (b) a new pulse source with an MLFL.
Fig. 2
Fig. 2 Configurations of the MLFL at the transmitter (a) and at the receiver (b).
Fig. 3
Fig. 3 MLFL output characteristics at the transmitter. (a) Output power versus pump power, (b) autocorrelation waveform, (c) optical spectrum, (d) RF spectrum of 10 GHz clock signal.
Fig. 4
Fig. 4 Optical Nyquist pulse generation for 640 Gbaud transmission. (a) Optical spectrum of the output signal from MLFL, (b) after HNLF, and (c) pulse shaper out. (d) Waveform after pulse shaping.
Fig. 5
Fig. 5 IF spectrum (a) and SSB phase noise spectrum (b) in the OPLL circuit.
Fig. 6
Fig. 6 Experimental setup for 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km.
Fig. 7
Fig. 7 Optical spectra and constellations of the output signal from the EDFA after the IQ modulator. (a-1), (b-1) Without and (a-2), (b-2) with the pulse broadening scheme.
Fig. 8
Fig. 8 BER of demultiplexed 10 Gbaud, 64QAM signal after 150 km transmission as a function of launch power.
Fig. 9
Fig. 9 Optical spectra. (a) Before and (b) after 150 km transmission.
Fig. 10
Fig. 10 BER characteristics of as a function of received power for one tributary (a), constellations before (b), and after (c) 150 km transmission.
Fig. 11
Fig. 11 BER characteristics for all the tributaries after 150 km transmission.

Metrics