Abstract

High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications – of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator

David Shrekenhamer, Claire M. Watts, and Willie J. Padilla
Opt. Express 21(10) 12507-12518 (2013)

Frequency-division-multiplexed single-pixel imaging with metamaterials

Claire M. Watts, Christian C. Nadell, John Montoya, Sanjay Krishna, and Willie J. Padilla
Optica 3(2) 133-138 (2016)

Doubling the pixel count limitation of single-pixel imaging via sinusoidal amplitude modulation

Yuanlong Zhang, Jinli Suo, Yuwang Wang, and Qionghai Dai
Opt. Express 26(6) 6929-6942 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Scribner, M. Kruer, and J. Killiany, “Infrared focal plane array technology,” Proc. IEEE 79, 66–85 (1991).
    [Crossref]
  2. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
    [Crossref]
  3. T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
    [Crossref]
  4. T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
    [Crossref]
  5. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4, 276–279 (2017).
    [Crossref]
  6. S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
    [Crossref]
  7. E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
    [Crossref]
  8. J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
    [Crossref]
  9. M. J. E. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Am. 39, 437 (1949).
    [Crossref] [PubMed]
  10. R. D. Swift, R. B. Wattson, J. A. Decker, R. Paganetti, and M. Harwit, “Hadamard transform imager and imaging spectrometer,” Appl. Opt. 15, 1595 (1976).
    [Crossref] [PubMed]
  11. M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  12. K. Johnson, D. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
    [Crossref]
  13. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
    [Crossref]
  14. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [Crossref]
  15. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  16. C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
    [Crossref]
  17. C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna, and W. J. Padilla, “Single pixel quadrature imaging with metamaterials,” Adv. Opt. Mater. 4, 66–69 (2016).
    [Crossref]
  18. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
    [Crossref]
  19. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,.” J. Opt. Soc. Am. A 34, A22–A36 (2017).
    [Crossref]
  20. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4, 430–433 (2017).
    [Crossref]
  21. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  22. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
    [Crossref]
  23. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref] [PubMed]
  24. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
    [Crossref] [PubMed]
  25. K. Fan, J. Suen, X. Wu, and W. J. Padilla, “Graphene metamaterial modulator for free-space thermal radiation,” Opt. Express 24, 25189 (2016).
    [Crossref] [PubMed]
  26. W. J. Harrington and J. W. Cell, “A set of square-wave functions orthogonal and complete in l2(0, 2),” Duke Math. J. 28, 393–407 (1961).
    [Crossref]
  27. Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
    [Crossref]

2017 (4)

2016 (3)

2015 (2)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

2014 (2)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

2011 (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

2010 (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

2009 (1)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

2008 (3)

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

2003 (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]

2002 (1)

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

1998 (1)

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

1994 (1)

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

1993 (1)

K. Johnson, D. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

1991 (1)

D. Scribner, M. Kruer, and J. Killiany, “Infrared focal plane array technology,” Proc. IEEE 79, 66–85 (1991).
[Crossref]

1976 (1)

1961 (1)

W. J. Harrington and J. W. Cell, “A set of square-wave functions orthogonal and complete in l2(0, 2),” Duke Math. J. 28, 393–407 (1961).
[Crossref]

1949 (1)

Alain, C.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

Baraniuk, R.

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Beletic, J. W.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Bingham, C.

Blank, R.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Boulanger, B.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Boyarsky, M.

Brener, I.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Bundara, S. V.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Burwell, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Carralejo, R.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Cayer, F.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Cell, J. W.

W. J. Harrington and J. W. Cell, “A set of square-wave functions orthogonal and complete in l2(0, 2),” Duke Math. J. 28, 393–407 (1961).
[Crossref]

Centeno, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Chen, H.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

Chen, H.-T.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Cich, M. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Davenport, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Decker, J. A.

Delaunay, P. Y.

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

Desroches, Y.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Duarte, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Endoh, T.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Fan, K.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Fromenteze, T.

Fujimoto, N.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Galán, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Ghanbari, M.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Golay, M. J. E.

Gollub, J. N.

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Goossens, S.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Grenier, C.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Gulbransen, D.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Gunapala, S. D.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Gupta, S.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Harrington, W. J.

W. J. Harrington and J. W. Cell, “A set of square-wave functions orthogonal and complete in l2(0, 2),” Duke Math. J. 28, 393–407 (1961).
[Crossref]

Harwit, M.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Hong, W.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Huang, E. K. W.

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Huynh-Thu, Q.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

Imani, M. F.

Itoh, S.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Jerominek, H.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Johnson, K.

K. Johnson, D. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Kanno, T.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Kelly, K.

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Killiany, J.

D. Scribner, M. Kruer, and J. Killiany, “Infrared focal plane array technology,” Proc. IEEE 79, 66–85 (1991).
[Crossref]

Konstantatos, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Koppens, F.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Krishna, S.

C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna, and W. J. Padilla, “Single pixel quadrature imaging with metamaterials,” Adv. Opt. Mater. 4, 66–69 (2016).
[Crossref]

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Kruer, M.

D. Scribner, M. Kruer, and J. Killiany, “Infrared focal plane array technology,” Proc. IEEE 79, 66–85 (1991).
[Crossref]

Larouche, C.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Lasanta, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Laska, J.

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

LeClair, S.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Lee, D.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Liu, X.

Loose, M.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

Maker, P. D.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Martel, A.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Matsumoto, S.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

McKnight, D.

K. Johnson, D. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

Mittleman, D. M.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Monasterio, C.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Montoya, J.

Montoya, J. A.

C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna, and W. J. Padilla, “Single pixel quadrature imaging with metamaterials,” Adv. Opt. Mater. 4, 66–69 (2016).
[Crossref]

Muller, R. E.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Murashima, S.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Nadell, C. C.

C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna, and W. J. Padilla, “Single pixel quadrature imaging with metamaterials,” Adv. Opt. Mater. 4, 66–69 (2016).
[Crossref]

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

Nakazato, A.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Navickaite, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Nguyen, B. M.

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

Nikitskiy, I.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Padilla, W. J.

Paganetti, R.

Pedross-Engel, A.

Peng, F.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

Pérez, R.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Pesquera, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Picard, F.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Piqueras, J. J.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Piquette, E. C.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Pope, T. D.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Pour, S. A.

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

Pulido-Mancera, L.

Puma, E.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Razeghi, M.

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

Reynolds, M. S.

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]

Saga, M.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Scribner, D.

D. Scribner, M. Kruer, and J. Killiany, “Infrared focal plane array technology,” Proc. IEEE 79, 66–85 (1991).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Shott, C. A.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sleasman, T.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,.” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Smith, D. R.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,.” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sprafke, T.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Sriram, S.

Stenger, V.

Suen, J.

Suen, J. Y.

Sun, Ting

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Sundaram, M.

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

Swift, R. D.

Takhar, D.

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tanaka, A.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Taylor, A. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Tennant, W. E.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Teranishi, N.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Tohyama, S.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Topart, P. A.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Tremblay, B.

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

Tripathi, S.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

Tsukamoto, N.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Twieg, R. J.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

Uchida, M.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Underwood, I.

K. Johnson, D. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Watts, C. M.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,.” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133 (2016).
[Crossref]

C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna, and W. J. Padilla, “Single pixel quadrature imaging with metamaterials,” Adv. Opt. Mater. 4, 66–69 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Wattson, R. B.

Wu, S.-T.

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

Wu, X.

Yamamoto, Y.

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

Zandian, M.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Zino, J.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Zurutuza, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

ACS Nano (1)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna, and W. J. Padilla, “Single pixel quadrature imaging with metamaterials,” Adv. Opt. Mater. 4, 66–69 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Duke Math. J. (1)

W. J. Harrington and J. W. Cell, “A set of square-wave functions orthogonal and complete in l2(0, 2),” Duke Math. J. 28, 393–407 (1961).
[Crossref]

Electron. Lett. (1)

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44, 800–801 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Johnson, D. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[Crossref]

E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour, and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE J. Quantum Electron. 46, 1704–1708 (2010).
[Crossref]

IEEE Signal Process. Mag. (1)

M. Duarte, M. Davenport, D. Takhar, J. Laska, Ting Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

IEEE Trans. Electron. Dev. (1)

S. D. Gunapala, S. V. Bundara, J. K. Liu, W. Hong, M. Sundaram, P. D. Maker, R. E. Muller, C. A. Shott, and R. Carralejo, “Long-wavelength 640×486 GaAs-AlGaAs quantum well infrared photodetector snap-shot camera,” IEEE Trans. Electron. Dev. 45, 1890–1895 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,.” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Opt. Express (1)

Optica (3)

Proc. IEEE (1)

D. Scribner, M. Kruer, and J. Killiany, “Infrared focal plane array technology,” Proc. IEEE 79, 66–85 (1991).
[Crossref]

Proc. SPIE (4)

T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, “Uncooled infrared focal plane array having 128 x 128 thermopile detector elements,” Proc. SPIE 2269, 450–459 (1994).
[Crossref]

T. D. Pope, H. Jerominek, C. Alain, F. Cayer, B. Tremblay, C. Grenier, P. A. Topart, S. LeClair, F. Picard, C. Larouche, B. Boulanger, A. Martel, and Y. Desroches, “Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs,” Proc. SPIE 4721, 64 (2002).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response IR spatial light modulators with a polymer network liquid crystal,” Proc. SPIE 9384, 93840N (2015).
[Crossref]

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical image of the 8×8 GSLM in a chip carrier. (b) zoomed-in view of the SLM. (c) Scanning electron microscope (SEM) image of the patterned metamaterial on graphene by electron beam lithography (EBL).The scale bar is 5 μm. (d) a close-up view of the metamaterial with dimensions px = 2 μm, py = 1.2 μm, l = 1.3 μm, w1 = 200 nm, w2 = 300 nm, g = 100 nm.
Fig. 2
Fig. 2 (a) Measured absorption for various gate voltages applied to the graphene. (b) Differential absorption spectrum between −20 V and 20 V.(c) Illustration of the imaging setup. GSLM: Graphene spatial light modulator; BS: beam splitter; WG: Wire-grid polarizer; OAP: off-axis parabolic mirror; MCT: Mercury cadmium telluride single pixel detector. (i) Oscilloscope is used for FDM imaging, and (ii) a Lock-in amplifier is used for raster scan imaging.
Fig. 3
Fig. 3 (a) Spatial map of the modulation depth of the spatial light modulator integrated from 6 μm to 7.6 μm. Top is the 3D map and the bottom is the corresponding 2D map. The colormapo shows the range of the modulation. (b) Experimentally measured ’Ir’ pattern statically displayed on the GSLM. The pixels with pattern ’Ir’ were applied with −20 V and other pixels were with 20 V. (c) Normalized display of a pattern of ’Ir’ based on the spatial map of the modulation depth in (a).
Fig. 4
Fig. 4 (a) An object – “d” mask – used for single pixel imaging. The object is binary with the yellow areas corresponding to open portions, and opaque portions denoted by blue colors. (b) Reconstructed image via raster scanning with the GSLM modulated at 2.27 kHz. (c) Reconstructed image via the frequency-division multiplexing method. (d) Frequency map used for FDM imaging. (e) The measured normalized power spectrum as a function of the modulation frequency – obtained by Fourier transforming the time-domain signal recorded by the infrared detector. The inset shows the measured modulation depth for pixels with corresponding modulation frequencies. The modulation depth is normalized to the average modulation measured with raster scanning.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR P = P peak var ( P n O n ) ,

Metrics