Abstract

A graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide is proposed and analyzed. By embedding four graphene layers in the double-stripe silicon nitride waveguide and the graphene layers co-electrode design, the total metal-graphene contact resistance can be reduced 50% and as high as 30.6GHz modulation bandwidth can be achieved theoretically. The calculated extinction ratio and figure of merit are 0.1658dB/um and 9.7, respectively. And the required switching voltage from its minimum to maximum absorption state is 3.8180V and 780.50fJ/bit power consuming can be achieved. The proposed modulator can remedy the lack of high speed modulator on the passive silicon nitride waveguide.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-absorption optical modulator using dual-graphene-on-graphene configuration

Shengwei Ye, Zishuai Wang, Linfeng Tang, Yali Zhang, Rongguo Lu, and Yong Liu
Opt. Express 22(21) 26173-26180 (2014)

High-speed double layer graphene electro-absorption modulator on SOI waveguide

Marco A. Giambra, Vito Sorianello, Vaidotas Miseikis, Simone Marconi, Alberto Montanaro, Paola Galli, Sergio Pezzini, Camilla Coletti, and Marco Romagnoli
Opt. Express 27(15) 20145-20155 (2019)

Design optimization of single and double layer Graphene phase modulators in SOI

Vito Sorianello, Michele Midrio, and Marco Romagnoli
Opt. Express 23(5) 6478-6490 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  3. S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
    [Crossref]
  4. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref] [PubMed]
  5. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref] [PubMed]
  6. M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
    [Crossref] [PubMed]
  7. X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
    [Crossref]
  8. J. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
    [Crossref]
  9. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  10. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  11. K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
    [Crossref] [PubMed]
  12. N. Gruhler, C. Benz, H. Jang, J. H. Ahn, R. Danneau, and W. H. P. Pernice, “High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices,” Opt. Express 21(25), 31678–31689 (2013).
    [Crossref] [PubMed]
  13. J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
    [Crossref]
  14. C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
    [Crossref]
  15. L. A. Shiramin and D. V. Thourhout, “Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
  16. M.-S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
    [Crossref]
  17. J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. Phys. D Appl. Phys. 48(23), 235101 (2015).
    [Crossref]
  18. S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, “Electro-absorption optical modulator using dual-graphene-on-graphene configuration,” Opt. Express 22(21), 26173–26180 (2014).
    [Crossref] [PubMed]
  19. C. C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264–5269 (2012).
    [Crossref] [PubMed]
  20. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
    [Crossref] [PubMed]
  21. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
    [Crossref] [PubMed]
  22. Z. L. Lu and W. S. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490–1496 (2012).
    [Crossref]
  23. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
    [Crossref] [PubMed]
  24. A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
    [Crossref]
  25. V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
    [Crossref] [PubMed]
  26. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
    [Crossref] [PubMed]
  27. M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
    [Crossref]
  28. Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
    [Crossref] [PubMed]

2017 (2)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

L. A. Shiramin and D. V. Thourhout, “Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).

2016 (1)

X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
[Crossref]

2015 (4)

J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
[Crossref]

C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. Phys. D Appl. Phys. 48(23), 235101 (2015).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
[Crossref] [PubMed]

2014 (5)

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, “Electro-absorption optical modulator using dual-graphene-on-graphene configuration,” Opt. Express 22(21), 26173–26180 (2014).
[Crossref] [PubMed]

M.-S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

J. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

2013 (2)

N. Gruhler, C. Benz, H. Jang, J. H. Ahn, R. Danneau, and W. H. P. Pernice, “High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices,” Opt. Express 21(25), 31678–31689 (2013).
[Crossref] [PubMed]

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (4)

2010 (3)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2008 (1)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Agarwal, A. M.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Ahmed, S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Ahn, J. H.

Ahn, J. R.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Akimoto, R.

J. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

An, J.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Ang, L. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Ang, P. K.

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

Bae, M.-H.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Barton, J. S.

Bauters, J. F.

Beeker, W.

Benz, C.

Blumenthal, D. J.

Bowers, J. E.

Bruinink, C. M.

Burla, M.

Cardenas, J.

C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Chee, A. K. L.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Cheng, Z. Z.

J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
[Crossref]

Chun, S.-H.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Corbett, B.

J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. Phys. D Appl. Phys. 48(23), 235101 (2015).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Daniel Lee, Y.-H.

C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Danneau, R.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Eggleton, B. J.

X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
[Crossref]

Fallahi, A.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Feng, J. J.

J. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Goldberg, B. B.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gosciniak, J.

J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. Phys. D Appl. Phys. 48(23), 235101 (2015).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gruhler, N.

Hao, Y.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Heck, M. J. R.

Heideman, R. G.

Jaiswal, M.

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

Jang, H.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, X.

Jin, Y.

John, D. D.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kim, H.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Kim, P.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Kim, Y. D.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Kim, Y. S.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Kimerling, L. C.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Kitt, A.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Koester, S. J.

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

Kurz, H.

Kwon, M.-S.

M.-S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Lee, C. C.

Lee, J. H.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Lee, S. W.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Leinse, A.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, M.

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

Lipson, M.

C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, Y.

Loh, K. P.

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

Lu, R.

Lu, Z. L.

Magnuson, C. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Marpaung, D.

Midrio, M.

Mohsin, M.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mosig, J. R.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Neumaier, D.

Ng, D. K. T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Ng, S. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Noculak, A.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ooi, K. J. A.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Otto, M.

Ozyilman, B.

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

Pachoud, A.

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

Park, Y. D.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Pernice, W. H. P.

Perruisseau-Carrier, J.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Phare, C. T.

C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Roeloffzen, C.

Romagnoli, M.

Ruoff, R. S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Schall, D.

Schibli, T. R.

Seo, J.-T.

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Shiramin, L. A.

L. A. Shiramin and D. V. Thourhout, “Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).

Shu, C.

J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
[Crossref]

Sorianello, V.

Suk, J. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Suzuki, S.

Swan, A. K.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Tamagnone, M.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Tan, D. T. H.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. Phys. D Appl. Phys. 48(23), 235101 (2015).
[Crossref]

Tang, L.

Thourhout, D. V.

L. A. Shiramin and D. V. Thourhout, “Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Tsang, H. K.

J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Wang, J. Q.

J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
[Crossref]

Wang, Q.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Wang, T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Wang, Z.

Xie, W.

Xiong, C.

X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
[Crossref]

Xu, C.

Yang, J.

Yang, L.

Ye, S.

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
[Crossref]

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, “Electro-absorption optical modulator using dual-graphene-on-graphene configuration,” Opt. Express 22(21), 26173–26180 (2014).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Y. B.

X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
[Crossref]

Zhao, W. S.

Zhuang, L.

ACS Nano (2)

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Y. D. Kim, M.-H. Bae, J.-T. Seo, Y. S. Kim, H. Kim, J. H. Lee, J. R. Ahn, S. W. Lee, S.-H. Chun, and Y. D. Park, “Focused-laser-enabled p-n junctions in graphene field-effect transistors,” ACS Nano 7(7), 5850–5857 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

EPL (1)

A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh, and B. Ozyilman, “Graphene transport at high carrier densities using polymer electrolyte gate,” EPL 92(2), 27001 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Shiramin and D. V. Thourhout, “Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).

IEEE Photonics J. (1)

M.-S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

J. Q. Wang, Z. Z. Cheng, C. Shu, and H. K. Tsang, “Optical absorption in graphene-on-silicon nitride microring resonators,” IEEE Photonics Technol. Lett. 27(16), 1765–1767 (2015).
[Crossref]

J. Opt. (1)

X. Zhang, Y. B. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18(7), 074016 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

J. Gosciniak, D. T. H. Tan, and B. Corbett, “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. Phys. D Appl. Phys. 48(23), 235101 (2015).
[Crossref]

Nano Lett. (1)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (8)

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

N. Gruhler, C. Benz, H. Jang, J. H. Ahn, R. Danneau, and W. H. P. Pernice, “High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices,” Opt. Express 21(25), 31678–31689 (2013).
[Crossref] [PubMed]

S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, “Electro-absorption optical modulator using dual-graphene-on-graphene configuration,” Opt. Express 22(21), 26173–26180 (2014).
[Crossref] [PubMed]

C. C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264–5269 (2012).
[Crossref] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in Graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Real and imaginary parts of graphene’s conductivity. (b) Graphene’s dielectric constant as a function of chemical potential at wavelength λ = 1550nm, T = 300 K, τ = 0.1ps.
Fig. 2
Fig. 2 Tuning the optical absorption of graphene in an electric-gated structure.
Fig. 3
Fig. 3 (a) The cross section of the double-stripe Si3N4 waveguide. (b) The graphene-on-graphene (GOG) structure. (c) The double graphene layers configuration. (d) The four graphene layers configuration.
Fig. 4
Fig. 4 (a)-(d) The electric field magnitude |E| distributions of the TE and TM modes at μc = 0 eV in the double and four graphene layers configurations. (e)-(h) The Real(Neff) and MPA of the TE and TM modes with different chemical potentials in both configurations.
Fig. 5
Fig. 5 (a) The plots of the normalized MPA of the TE mode in the four graphene layers configuration by substituting the Im[ε||(µc)] and |E|||2 values in the graphene to Eq. (4).
Fig. 6
Fig. 6 The cross section of the four graphene layers modulator structure.
Fig. 7
Fig. 7 The equivalent electrical circuit of the four graphene layers modulator.
Fig. 8
Fig. 8 (a) The plots of the electric field magnitude |E|||2 across the waveguide center of the TE mode in the X direction. (b) The MPA of the metal electrodes in the double-stripe Si3N4 waveguide without graphene.
Fig. 9
Fig. 9 The modulation performances of the four graphene layers modulator with a 7 nm-thick SiO2 insulating dielectric spacer.

Tables (1)

Tables Icon

Table 1 The performance summary of modulators.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ = σ int e r + σ int ra = i 8 σ 0 π E t h E p h + i E s I n [ 2 cos ( E F 2 E t h ) ] + σ 0 [ 1 2 + 1 π tan 1 ( E p h 2 E F 2 E t h ) i 2 π I n ( E p h + 2 E F ) 2 ( E p h 2 E F ) 2 + 4 E t h 2 ]
ε ( μ c ) = 2 .5 + i σ ( μ c ) ω ε 0 d G
μ c = sgn ( n ) V F π | N | = sgn ( n ) V F α π | V + V 0 |
p d = 1 2 k Im [ ε || ( μ c ) ] | E || | 2
C o x = ε 0 ε r S d
1 R S = 1 2 ( R c G + R s h G ) + 1 2 ( R c G + R s h G ) = 1 R c G + R s h G
C total = 2 C o x
f 3 d B = 1 2 π R S C t o t a l

Metrics