Abstract

In recent years, single-pixel imaging has become one of the most interesting and promising imaging technologies for various applications. In this paper, a big data environment for the first time to my knowledge is designed and introduced into single-pixel ghost imaging for securing information. Many series of one-dimensional ciphertexts are recorded by a single-pixel bucket detector to form a big data environment. Several hidden inputs are further encoded based on ghost imaging by using hierarchical structure, and their corresponding ciphertexts are synthesized into the big data environment for verifying the hidden ghosts and identifying the targeted ghosts. This new finding could open up a different research perspective for exploring more applications based on single-pixel imaging.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of ghost-imaging-based authentication in scattering media

Yin Xiao, Lina Zhou, and Wen Chen
Opt. Express 27(15) 20558-20566 (2019)

Information encryption based on the customized data container under the framework of computational ghost imaging

Sui Liansheng, Du Cong, Xu Minjie, Tian Ailing, and Asundi Anand
Opt. Express 27(12) 16493-16506 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
    [Crossref]
  2. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref] [PubMed]
  3. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
    [Crossref] [PubMed]
  4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref] [PubMed]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref] [PubMed]
  6. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
    [Crossref]
  7. R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
    [Crossref]
  8. B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
    [Crossref] [PubMed]
  9. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref] [PubMed]
  10. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  11. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref] [PubMed]
  12. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  13. M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
    [Crossref]
  14. W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
    [Crossref] [PubMed]
  15. W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
    [Crossref]
  16. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  17. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
    [Crossref]
  18. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
    [Crossref]
  19. W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
    [Crossref]
  20. L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
    [Crossref]
  21. R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
    [Crossref]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  23. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
    [Crossref]
  24. W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
    [Crossref]
  25. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  26. L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
    [Crossref]
  27. W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
    [Crossref]
  28. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010).
    [Crossref] [PubMed]

2016 (1)

W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

2015 (2)

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

2014 (3)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

2013 (3)

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

2012 (4)

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
[Crossref] [PubMed]

2011 (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

2010 (3)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010).
[Crossref] [PubMed]

2009 (2)

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

1997 (1)

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

1996 (1)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

1995 (3)

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Ahmadi-Kandjani, S.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Baddorf, A. P.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Belianinov, A.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Boyd, R. W.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Chan, K. W. C.

Chen, W.

W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

Chen, X.

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

Clemente, P.

Deacon, K. S.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Durán, V.

Edgar, M. P.

Erkmen, B. I.

B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
[Crossref] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Gianfrancesco, A. G.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Javidi, B.

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

Jesse, S.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Jiang, C.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Kalinin, S. V.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Kheradmand, R.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Kong, L. J.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Lancis, J.

Li, S. M.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Li, Y.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Meerholz, K.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

O’Sullivan, M. N.

Padgett, M. J.

Peyghambarian, N.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Qian, S. X.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Refregier, P.

Ren, Y.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Strekalov, D. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Sun, B.

Tajahuerce, E.

Tanha, M.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

Torres-Company, V.

Tselev, A.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Tu, C.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Tunick, A. D.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

Vasudevan, R. K.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Wang, H. T.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Wang, J.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Welsh, S. S.

Xu, L.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Yuan, J.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Adv. Opt. Photonics (2)

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

Appl. Phys. Lett. (7)

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

EPL (1)

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

IEEE Access (1)

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

IEEE Photonics J. (1)

W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (2)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Phys. Rev. Lett. (4)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Phys. Today (1)

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

Other (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic for illustrating the generation of many series of one-dimensional ciphertexts to form a big data environment: SLM, phase-only spatial light modulator; BD, bucket detector; h = 1,2,3,...,30000. A collecting lens can be placed between the input and bucket detector.
Fig. 2
Fig. 2 Data big environment established by using the recorded ciphertexts.
Fig. 3
Fig. 3 Schematic setup for computationally encoding the hidden inputs based on single-pixel imaging using a hierarchical structure: i, j, k, l = 1,2,3,...,650. For hierarchically encoding the hidden inputs, computational approach is applied based on single-pixel ghost imaging. In practice, different architectures can be flexibly designed and computationally applied for encoding the hidden inputs.
Fig. 4
Fig. 4 Schematic for illustrating the arbitrary selection of phase-only masks (M i , M j , M k and M l ) from the phase-mask sequence M h . The maximum value for i, j, k and l is 650, and the maximum value for h is 30000.
Fig. 5
Fig. 5 Schematic for illustrating the embedding and replacement process to generate the synthesized ciphertexts: one-dimensional ciphertexts C i (generated for a hidden input) randomly replace the pixels in a series of ciphertexts T h (generated for a target input).
Fig. 6
Fig. 6 (a) Typical one-dimensional ciphertexts T h generated for a target input, and (b) typical one-dimensional synthesized ciphertexts T' h after the ciphertexts generated for a hidden input are embedded for the replacements.
Fig. 7
Fig. 7 (a) A recovered hidden input, (b) data authentication corresponding to (a), and (c) the correspondingly recovered target input; (d) A recovered hidden input, (e) data authentication corresponding to (d), and (f) the correspondingly recovered target input; (g) A recovered hidden input, (h) data authentication corresponding to (g), and (i) the correspondingly recovered target input; (j) A recovered hidden input, (k) data authentication corresponding to (j), and (l) the correspondingly recovered target input.
Fig. 8
Fig. 8 (a)-(d) Four recovered inputs when the hidden ciphertexts are respectively selected from a wrong series of ciphertexts in the big data environment for the decoding and verification, and (e)-(h) authentication distributions respectively corresponding to (a)-(d).

Metrics