Abstract

A solution for multi-functional indoor light sources is proposed to achieve the new concept of healthy lighting. A remotely controllable light source that embodies a quadruple-chip light-emitting diode and driven by pulse-width-modulation currents is designed. Therefore, spectral power distributions (SPDs) of the light source can be readily controlled. An algorithm, namely the optical power ratio algorithm, is developed to select all suitable SPDs adapted for various applications. Principles of selection are based on those traditional visual indices, as well as on some non-visual parameters such as circadian action factor, circadian efficacy of radiation and circadian illuminance. We investigate in detail the correlation among these parameters and provide SPDs with both decent visual and non-visual performances for three typical cases. The study suggests some fundamental principles for designing healthy light sources, and can be regarded as a guide for designing indoor light sources of the next generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvements of mesopic luminance for light-emitting-diode-based outdoor light sources via tuning scotopic/photopic ratios

Tingzhu Wu, Yijun Lu, Ziquan Guo, Lili Zheng, Honghui Zhu, Yao Xiao, Tien-Mo Shih, Yue Lin, and Zhong Chen
Opt. Express 25(5) 4887-4897 (2017)

Optimization of solid-state lamps for photobiologically friendly mesopic lighting

Artūras Žukauskas, Rimantas Vaicekauskas, and Pranciškus Vitta
Appl. Opt. 51(35) 8423-8432 (2012)

Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities

Tingzhu Wu, Yue Lin, Lili Zheng, Ziquan Guo, Jianxing Xu, Shijie Liang, Zhuguagn Liu, Yijun Lu, Tien-mo Shih, and Zhong Chen
Opt. Express 26(4) 4135-4147 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
    [Crossref] [PubMed]
  2. S. M. Pauley, “Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue,” Med. Hypotheses 63(4), 588–596 (2004).
    [Crossref] [PubMed]
  3. G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
    [PubMed]
  4. K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535(1), 261–267 (2001).
    [Crossref] [PubMed]
  5. D. Gall and K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proceedings of the CIE Symposium 2004 on Light and Health: Non-visual Effects, (Vienna, Austria, 2004), pp. 129–132.
  6. M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Light. Res. Technol. 34(3), 177–190 (2002).
    [Crossref]
  7. M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
    [Crossref] [PubMed]
  8. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [Crossref]
  9. Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
    [Crossref]
  10. Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, and Y. Cao, “Study on the correlations between color rendering indices and the spectral power distribution,” Opt. Express 22(S4Suppl 4), A1029–A1039 (2014).
    [Crossref] [PubMed]
  11. J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LED for optimizing the circadian effect, color quality and vision performance,” Light Sci. Appl. 3(2), 1–9 (2014).
  12. Z. Luo, H. Chen, Y. Liu, S. Xu, and S. T. Wu, “Color-tunable light emitting diodes based on quantum dot suspension,” Appl. Opt. 54(10), 2845–2850 (2015).
    [Crossref] [PubMed]
  13. L. Zan, D. Lin, P. Zhong, and G. He, “Optimal spectra of white LED integrated with quantum dots for mesopic vision,” Opt. Express 24(7), 7643–7653 (2016).
    [Crossref] [PubMed]
  14. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref] [PubMed]
  15. M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
    [Crossref]
  16. G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49(24), 4670–4676 (2010).
    [Crossref] [PubMed]
  17. J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
    [Crossref] [PubMed]
  18. A. Žukauskas, R. Vaicekauskas, and P. Vitta, “Optimization of solid-state lamps for photobiologically friendly mesopic lighting,” Appl. Opt. 51(35), 8423–8432 (2012).
    [Crossref] [PubMed]
  19. M. Aubé, J. Roby, and M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PLoS One 8(7), e67798 (2013).
    [Crossref] [PubMed]
  20. H. Sasabe and J. Kido, “Development of high performance OLEDs for general lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1699–1707 (2013).
    [Crossref]
  21. Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
    [Crossref]

2016 (2)

L. Zan, D. Lin, P. Zhong, and G. He, “Optimal spectra of white LED integrated with quantum dots for mesopic vision,” Opt. Express 24(7), 7643–7653 (2016).
[Crossref] [PubMed]

Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

2015 (2)

Z. Luo, H. Chen, Y. Liu, S. Xu, and S. T. Wu, “Color-tunable light emitting diodes based on quantum dot suspension,” Appl. Opt. 54(10), 2845–2850 (2015).
[Crossref] [PubMed]

J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, and Y. Cao, “Study on the correlations between color rendering indices and the spectral power distribution,” Opt. Express 22(S4Suppl 4), A1029–A1039 (2014).
[Crossref] [PubMed]

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LED for optimizing the circadian effect, color quality and vision performance,” Light Sci. Appl. 3(2), 1–9 (2014).

2013 (3)

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

M. Aubé, J. Roby, and M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PLoS One 8(7), e67798 (2013).
[Crossref] [PubMed]

H. Sasabe and J. Kido, “Development of high performance OLEDs for general lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1699–1707 (2013).
[Crossref]

2012 (1)

2010 (2)

2009 (1)

M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

2005 (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

2004 (1)

S. M. Pauley, “Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue,” Med. Hypotheses 63(4), 588–596 (2004).
[Crossref] [PubMed]

2002 (2)

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Light. Res. Technol. 34(3), 177–190 (2002).
[Crossref]

2001 (2)

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535(1), 261–267 (2001).
[Crossref] [PubMed]

Arendt, J.

K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535(1), 261–267 (2001).
[Crossref] [PubMed]

Aubé, M.

M. Aubé, J. Roby, and M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PLoS One 8(7), e67798 (2013).
[Crossref] [PubMed]

Berson, D. M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Bierman, A.

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

Bieske, K.

D. Gall and K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proceedings of the CIE Symposium 2004 on Light and Health: Non-visual Effects, (Vienna, Austria, 2004), pp. 129–132.

Brainard, G. C.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Bullough, J. D.

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Light. Res. Technol. 34(3), 177–190 (2002).
[Crossref]

Byrne, B.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Cao, Y.

Chen, G. L.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Chen, H.

Chen, Z.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Crawford, M. H.

M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

Cui, Z.

Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

Dai, Q.

Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

Deng, Z.

Do, Y. R.

J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
[Crossref] [PubMed]

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LED for optimizing the circadian effect, color quality and vision performance,” Light Sci. Appl. 3(2), 1–9 (2014).

Dunn, F. A.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Figueiro, M. G.

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Light. Res. Technol. 34(3), 177–190 (2002).
[Crossref]

Gall, D.

D. Gall and K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proceedings of the CIE Symposium 2004 on Light and Health: Non-visual Effects, (Vienna, Austria, 2004), pp. 129–132.

Gao, Y. L.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Gerner, E.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Glickman, G.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Greeson, J. M.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Guo, Z.

Guo, Z. Q.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Hanifin, J. P.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Hao, L.

Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

He, G.

Kido, J.

H. Sasabe and J. Kido, “Development of high performance OLEDs for general lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1699–1707 (2013).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Kocifaj, M.

M. Aubé, J. Roby, and M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PLoS One 8(7), e67798 (2013).
[Crossref] [PubMed]

Lan, H.

Lin, D.

Lin, S. Q.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Lin, Y.

Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, and Y. Cao, “Study on the correlations between color rendering indices and the spectral power distribution,” Opt. Express 22(S4Suppl 4), A1029–A1039 (2014).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Lu, Y.

Lu, Y. J.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Luo, Z.

Oh, J. H.

J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
[Crossref] [PubMed]

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LED for optimizing the circadian effect, color quality and vision performance,” Light Sci. Appl. 3(2), 1–9 (2014).

Ohno, Y.

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Park, H. K.

J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
[Crossref] [PubMed]

Pauley, S. M.

S. M. Pauley, “Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue,” Med. Hypotheses 63(4), 588–596 (2004).
[Crossref] [PubMed]

Rea, M. S.

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Light. Res. Technol. 34(3), 177–190 (2002).
[Crossref]

Roby, J.

M. Aubé, J. Roby, and M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PLoS One 8(7), e67798 (2013).
[Crossref] [PubMed]

Rollag, M. D.

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

Sasabe, H.

H. Sasabe and J. Kido, “Development of high performance OLEDs for general lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1699–1707 (2013).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Shih, T. M.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Skene, D. J.

K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535(1), 261–267 (2001).
[Crossref] [PubMed]

Takao, M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Thapan, K.

K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535(1), 261–267 (2001).
[Crossref] [PubMed]

Vaicekauskas, R.

Vitta, P.

Wu, S. T.

Xu, S.

Yang, S. J.

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LED for optimizing the circadian effect, color quality and vision performance,” Light Sci. Appl. 3(2), 1–9 (2014).

Yoo, H.

J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
[Crossref] [PubMed]

Zan, L.

Zhang, J. H.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Zheng, L.

Zhong, P.

Zhu, L. H.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Žukauskas, A.

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

IEEE Photonics J. (1)

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

J. Appl. Phys. (1)

Q. Dai, L. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

J. Circadian Rhythms (1)

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Sasabe and J. Kido, “Development of high performance OLEDs for general lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1699–1707 (2013).
[Crossref]

J. Neurosci. (1)

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21(16), 6405–6412 (2001).
[PubMed]

J. Physiol. (1)

K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535(1), 261–267 (2001).
[Crossref] [PubMed]

Light Sci. Appl. (1)

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LED for optimizing the circadian effect, color quality and vision performance,” Light Sci. Appl. 3(2), 1–9 (2014).

Light. Res. Technol. (1)

M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Light. Res. Technol. 34(3), 177–190 (2002).
[Crossref]

Med. Hypotheses (1)

S. M. Pauley, “Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue,” Med. Hypotheses 63(4), 588–596 (2004).
[Crossref] [PubMed]

Opt. Eng. (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Opt. Express (2)

PLoS One (1)

M. Aubé, J. Roby, and M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PLoS One 8(7), e67798 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

J. H. Oh, H. Yoo, H. K. Park, and Y. R. Do, “Analysis of circadian properties and healthy levels of blue light from smartphones at night,” Sci. Rep. 5(28), 11325 (2015).
[Crossref] [PubMed]

Science (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Other (1)

D. Gall and K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proceedings of the CIE Symposium 2004 on Light and Health: Non-visual Effects, (Vienna, Austria, 2004), pp. 129–132.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Normalized spectra of the circadian sensitivity curve C(λ) [5], the photopic sensitivity curve V(λ) and the scotopic sensitivity curve V’(λ) [9]; (b) The relative melatonin suppression value versus CIL of a 470 nm blue LED (B470 LED). Data are from Ref [17].
Fig. 2
Fig. 2 SPDs of metameric white lights at 4000K, generated by the same RGBW LED with different PWM currents. (a) The overall SPD of which CRI equals 32. (b) The overall SPD of which CRI equals 82.
Fig. 3
Fig. 3 The flow chart of the OPRA.
Fig. 4
Fig. 4 The flow chart of enumerating all available relative SPDs by changing the optical power ratio of RGBW LED.
Fig. 5
Fig. 5 The RGBW LED and SPDs of individual chips at 350 mA.
Fig. 6
Fig. 6 Optical powers versus PWM duty cycles of the RGBW LED.
Fig. 7
Fig. 7 Schematics of the current-drive circuit for the RGBW LED.
Fig. 8
Fig. 8 Product-showcase lighting: (a) Measured and set values of CRI and CAF; (b) PWM duty cycles versus CCT.
Fig. 9
Fig. 9 Office-at-night lighting: (a) Measured and set values of CRI and CAF; (b) PWM duty cycles versus CCT.
Fig. 10
Fig. 10 Bedroom-at-night lighting: (a) Measured and set values of CRI and CAF; (b) PWM duty cycles versus CCT.
Fig. 11
Fig. 11 (a) CRI versus CCT of three different applications. (b) CAF versus CCT of three different applications.
Fig. 12
Fig. 12 The threshold value of VILON for better work activity in office and the threshold value of VILBN for a relaxing environment in bedroom.

Tables (8)

Tables Icon

Table 1 Key parameters for the vision and circadian performance

Tables Icon

Table 2 Parameters of the metameric white light at 4000K

Tables Icon

Table 3 Optimization goals for three different situations

Tables Icon

Table 4 Parameters of the RGBW LED

Tables Icon

Table 5 Experimental results of RGBW LED for product-showcase lighting

Tables Icon

Table 6 Experimental results of RGBW LED for office-at-night lighting

Tables Icon

Table 7 Experimental results of RGBW LED for bedroom-at-night lighting

Tables Icon

Table 8 Acronyms of technical terms presented in this article

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P o E o ( λ ) = P r E r ( λ ) + P g E g ( λ ) + P b E b ( λ ) + P w E w ( λ ) ,
{ R i = P i P o , ( i = r , g , b , w ) P o = P r + P g + P b + P w .
E o ( λ ) = R r E r ( λ ) + R g E g ( λ ) + R b E b ( λ ) + R w E w ( λ ) .

Metrics