Abstract

Long-range C-OFDR measurement of fiber Rayleigh scatter signature is described. The Rayleigh scatter signature, which is an interference pattern of backscatters from the random refractive indices in fibers, is known to be applicable to fiber identification and temperature or strain sensing by measuring its repeatability and its spectral shift. However, these applications have not been realized at ranges beyond the laser coherence length since laser phase noise degrades its repeatability. This paper proposes and demonstrates a method for analyzing the optical power spectrum of local Rayleigh backscatter to overcome the limitation imposed by laser phase noise. The measurable range and spatial performance are also investigated experimentally with respect to the remaining phase noise and noise reduction by signal averaging with the proposed method. The feasibility of Rayleigh scatter signature measurement for long-range applications is confirmed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source

Jie Qin, Ling Zhang, Weilin Xie, Ran Cheng, Zhangweiyi Liu, Wei Wei, and Yi Dong
Opt. Express 27(14) 19359-19368 (2019)

Dynamic optical frequency domain reflectometry

Dror Arbel and Avishay Eyal
Opt. Express 22(8) 8823-8830 (2014)

Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range

Qingwen Liu, Xinyu Fan, and Zuyuan He
Opt. Express 23(20) 25988-25995 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15(9), 2112–2115 (1976).
    [Crossref] [PubMed]
  2. W. Eickhoff and R. U. Lrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  3. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26(9), 1603–1606 (1987).
    [Crossref] [PubMed]
  4. M. Frogatt, B. Soller, D. Gifford, and M. Wolfe, “Correlation and keying of Rayleigh scatter for loss and temperature sensing in parallel optical networks,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2004), paper PD17.
  5. Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
    [Crossref]
  6. D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
    [Crossref]
  7. E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
    [Crossref]
  8. P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
    [Crossref]
  9. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
    [Crossref]
  10. S. Venkatesh and W. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
    [Crossref]
  11. S. Ohno, D. Iida, K. Toge, and T. Manabe, “Long-range C-OFDR measurement of Rayleigh scatter signature of fiber beyond laser coherence length,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2016), paper W4F.4.
    [Crossref]
  12. A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  13. M. Inoue, F. Ito, X. Fan, and Y. Koshikiya, “Very long range quasi-Fourier spectroscopy for narrowband lasers,” Opt. Express 20(26), B566–B573 (2012).
    [Crossref] [PubMed]
  14. Y. Koshikiya, X. Fan, and F. Ito, “Long-range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
    [Crossref]
  15. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett. 32(22), 3227–3229 (2007).
    [Crossref] [PubMed]
  16. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).
    [Crossref]

2012 (3)

2008 (1)

2007 (2)

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett. 32(22), 3227–3229 (2007).
[Crossref] [PubMed]

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

2006 (1)

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

1997 (1)

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1993 (2)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

S. Venkatesh and W. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

1987 (1)

1984 (1)

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

1981 (1)

W. Eickhoff and R. U. Lrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

1976 (1)

Askins, C.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Barnoski, M. K.

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

Chida, K.

Davis, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Duncan, R.

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Eda, Y.

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

Eickhoff, W.

W. Eickhoff and R. U. Lrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Fan, X.

Friebele, E.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Froggatt, M.

E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
[Crossref]

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Gifford, D.

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

Healey, P.

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

Hirose, S.

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

Hogari, K.

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

Horrell, E.

E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
[Crossref]

Inoue, M.

Ito, F.

Jensen, S. M.

Kersey, A.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Klute, S.

E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
[Crossref]

Koo, K.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koshikiya, Y.

Koyamada, Y.

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

Kreger, S.

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Lally, E.

E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
[Crossref]

LeBlanc, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lrich, R. U.

W. Eickhoff and R. U. Lrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Nakamura, S.

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

Noda, J.

Patrick, H.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Reaves, M.

E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
[Crossref]

Sang, A.

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Soller, B.

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Sorin, W.

S. Venkatesh and W. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

Takada, K.

Venkatesh, S.

S. Venkatesh and W. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

Wolfe, M.

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

Yokohama, I.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Eickhoff and R. U. Lrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Electron. Lett. (1)

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

IEICE Trans. Commun. (1)

Y. Koyamada, Y. Eda, S. Hirose, S. Nakamura, and K. Hogari, “Novel fiber-optic distributed strain and temperature sensor with very high resolution,” IEICE Trans. Commun. E89-B(5), 1722–1725 (2006).
[Crossref]

J. Lightwave Technol. (5)

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

S. Venkatesh and W. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

Y. Koshikiya, X. Fan, and F. Ito, “Long-range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
[Crossref]

F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

D. Gifford, S. Kreger, A. Sang, M. Froggatt, R. Duncan, M. Wolfe, and B. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” Proc. SPIE 6770, 67700F (2007).
[Crossref]

E. Lally, M. Reaves, E. Horrell, S. Klute, and M. Froggatt, “Fiber optic shape sensing for monitoring of flexible structures,” Proc. SPIE 8345, 83452Y (2012).
[Crossref]

Other (2)

M. Frogatt, B. Soller, D. Gifford, and M. Wolfe, “Correlation and keying of Rayleigh scatter for loss and temperature sensing in parallel optical networks,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2004), paper PD17.

S. Ohno, D. Iida, K. Toge, and T. Manabe, “Long-range C-OFDR measurement of Rayleigh scatter signature of fiber beyond laser coherence length,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2016), paper W4F.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Basic setup of C-OFDR.
Fig. 2
Fig. 2 One-dimensional scatter model.
Fig. 3
Fig. 3 Experimental setup of C-OFDR.
Fig. 4
Fig. 4 Cross-correlations of (a) complex scatter spectrum, (b) scatter power spectrum at each segment position. The segment size was 100 m.
Fig. 5
Fig. 5 (a) Scatter power spectra, (b) cross-correlation of the scatter power spectra at 40 km measured at 35.00 and 35.02 °C. In the cross-correlation, the spectrum at 35.00°C was used as reference data. The segment size was 25 m. Laser 1 with Lc = 10 km was used.
Fig. 6
Fig. 6 Temperature dependence of spectral shift of the scatter power spectrum measured at 40 km. The solid line is a linear least square fit. The segment size was 25 m.
Fig. 7
Fig. 7 Segment size dependence of the cross-correlation of the scatter power spectrum at 20 km.
Fig. 8
Fig. 8 Frequency sweep rate dependence of the cross-correlation of the scatter power spectrum at 20 km.
Fig. 9
Fig. 9 Averaging number dependence of the cross-correlation of the averaged scatter spectra measured with (a) Laser 1, (b) Laser 2.
Fig. 10
Fig. 10 Dependence of cross-correlation of averaged scatter spectra on segment position difference.
Fig. 11
Fig. 11 Fresnel reflection at the end of a 50-km long SMF.
Fig. 12
Fig. 12 Configuration of sensing fiber.
Fig. 13
Fig. 13 Spectral shift distribution of averaged scatter spectrum at each temperature in Section B. The spectrum at 30.5°C was used as reference data in the cross-correlation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) i = 1 M a i cos [ 2 π ( ν 0 + γ t ) 2 n z i c + θ ( t ) θ ( t 2 n z i c ) ] ,
σ a , b ( t ) i = a b a i exp { j [ 2 π ( ν 0 + γ t ) 2 n z i c + θ ( t ) θ ( t 2 n z i c ) ] } .
| σ a , b ( t ) | 2 = i = a b a i 2 + 2 i = a b j = i + 1 b a i a j cos { 2 π ( ν 0 + γ t ) ( 2 n z j c 2 n z i c ) [ θ ( t 2 n z j c ) θ ( t 2 n z i c ) ] } ,
Δ z max = c 2 n γ Δ f b = c 2 n γ 2 Δ f = c 2 π n γ L c

Metrics