Abstract

Intrinsic absorption and subsequent heat generation have long been issues for metal-based plasmonics. Recently, thermo-plasmonics, which takes the advantage of such a thermal effect, is emerging as an important branch of plasmonics. However, although significant temperature increase is involved, characterization of metal permittivity at different temperatures and corresponding thermo-derivative are lacking. Here we measure gold permittivity from 300K to 570K, which the latter is enough for gold annealing. More than one order difference in thermo-derivative is revealed between annealed and unannealed films, resulting in a large variation of plasmonic properties. In addition, an unusual increase of imaginary permittivity after annealing is found. Both these effects can be attributed to the increased surface roughness incurred by annealing. Our results are valuable for characterizing extensively used unannealed nanoparticles, or annealed nanostructures, as building blocks in future thermo-nano-plasmonic systems.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

7 December 2018: Corrections were made to Fig. 3 and the caption of Fig. 2.

19 August 2016: Corrections were made to the title; Refs. 33–36; body text; Figs. 2, 3, and 5; Eqs. (2) and (3); Table 1; and the funding and acknowedgments sections.


OSA Recommended Articles
Temperature-dependent optical properties of gold thin films

Harsha Reddy, Urcan Guler, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
Opt. Mater. Express 6(9) 2776-2802 (2016)

Phase sensitive measurement of the wavelength dependence of the complex permittivity of a thin gold film using surface plasmon resonance

Petr Hlubina, Milena Lunackova, and Dalibor Ciprian
Opt. Mater. Express 9(3) 992-1001 (2019)

Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study

Slimane Laref, Jiangrong Cao, Abu Asaduzzaman, Keith Runge, Pierre Deymier, Richard W. Ziolkowski, Mamoru Miyawaki, and Krishna Muralidharan
Opt. Express 21(10) 11827-11838 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, “Metallic metamaterials and plasmonics,” Philos Trans A Math Phys Eng Sci 369(1950), 3431–3433 (2011).
    [Crossref] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  3. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Opt. Express 2, 30–38 (2007).
  4. V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
    [Crossref]
  5. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [Crossref] [PubMed]
  6. Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
    [Crossref] [PubMed]
  7. S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
    [Crossref]
  8. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
    [Crossref] [PubMed]
  9. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  10. Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref] [PubMed]
  11. X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
    [Crossref]
  12. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
    [Crossref] [PubMed]
  13. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
    [Crossref] [PubMed]
  14. N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  15. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref] [PubMed]
  16. G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. Chem. 2, 1835 (1969).
  17. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  18. O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
    [Crossref]
  19. R. B. Wilson, B. A. Apgar, L. W. Martin, and D. G. Cahill, “Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties,” Opt. Express 20(27), 28829–28838 (2012).
    [Crossref] [PubMed]
  20. Y. J. Chen, M. C. Lee, and C. M. Wang, “Dielectric function dependence on temperature for Au and Ag,” Jpn. J. Appl. Phys. 53(8S2), 08MG02 (2014).
    [Crossref]
  21. A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
    [Crossref]
  22. M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
    [Crossref] [PubMed]
  23. V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
    [Crossref]
  24. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  25. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
    [Crossref]
  26. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).
  27. N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Solid State Commun. 8(15), 1221–1226 (1970).
    [Crossref]
  28. A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
    [Crossref]
  29. H. R. Moon, D.-W. Lim, and M. P. Suh, “Fabrication of metal nanoparticles in metal-organic frameworks,” Chem. Soc. Rev. 42(4), 1807–1824 (2013).
    [Crossref] [PubMed]
  30. C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
    [Crossref]
  31. S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
    [Crossref] [PubMed]
  32. Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics (accepted).
  33. J. W. C. Vries, “Resistivity of thin Au films as a function of grain diameter and temperature,” J. Phys. F 17(9), 1945–1952 (1987).
    [Crossref]
  34. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  35. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” https://arxiv.org/abs/1604.00064 .
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007).
  37. D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
    [Crossref] [PubMed]
  38. S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54(3), 477–481 (2015).
    [Crossref]
  39. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]

2015 (2)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54(3), 477–481 (2015).
[Crossref]

2014 (10)

Y. J. Chen, M. C. Lee, and C. M. Wang, “Dielectric function dependence on temperature for Au and Ag,” Jpn. J. Appl. Phys. 53(8S2), 08MG02 (2014).
[Crossref]

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
[Crossref]

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

2013 (5)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

H. R. Moon, D.-W. Lim, and M. P. Suh, “Fabrication of metal nanoparticles in metal-organic frameworks,” Chem. Soc. Rev. 42(4), 1807–1824 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[Crossref] [PubMed]

2012 (2)

R. B. Wilson, B. A. Apgar, L. W. Martin, and D. G. Cahill, “Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties,” Opt. Express 20(27), 28829–28838 (2012).
[Crossref] [PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

2011 (5)

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

W. L. Barnes, “Metallic metamaterials and plasmonics,” Philos Trans A Math Phys Eng Sci 369(1950), 3431–3433 (2011).
[Crossref] [PubMed]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

2008 (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

2007 (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Opt. Express 2, 30–38 (2007).

2006 (1)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

2005 (1)

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

1998 (1)

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).

1987 (1)

J. W. C. Vries, “Resistivity of thin Au films as a function of grain diameter and temperature,” J. Phys. F 17(9), 1945–1952 (1987).
[Crossref]

1975 (1)

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Solid State Commun. 8(15), 1221–1226 (1970).
[Crossref]

1969 (1)

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. Chem. 2, 1835 (1969).

Apgar, B. A.

Babar, S.

Barnes, W. L.

W. L. Barnes, “Metallic metamaterials and plasmonics,” Philos Trans A Math Phys Eng Sci 369(1950), 3431–3433 (2011).
[Crossref] [PubMed]

Beauvais, J.

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

Biancalana, F.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Boltasseva, A.

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Bondarchuk, I. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Bosman, M.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Boyd, D. A.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Brongersma, M.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Cahill, D. G.

Carrier, D.

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

Caylor, J. C.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Chang, W.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Chen, G.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Chen, X.

X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
[Crossref]

Chen, Y. J.

Y. J. Chen, M. C. Lee, and C. M. Wang, “Dielectric function dependence on temperature for Au and Ag,” Jpn. J. Appl. Phys. 53(8S2), 08MG02 (2014).
[Crossref]

Chiesa, M.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Christensen, N. E.

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Solid State Commun. 8(15), 1221–1226 (1970).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S. W.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Chu, S.-W.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics (accepted).

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Conforti, M.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Dewalt, C. J.

Djurišic, A. B.

Dmitruk, I. M.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Duan, H.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Dubowski, J. J.

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

Dunsby, C. W.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Elazar, J. M.

El-Naggar, M. Y.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Feng, H.-P.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).

Foreman, M. R.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

French, P. M.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Fujita, K.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Gage, E. C.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Gao, K. Z.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Goodwin, D. G.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Opt. Express 2, 30–38 (2007).

Greengard, L.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Guerrisi, M.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

Guler, U.

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Gurin, V. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).

Halas, N. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Hammack, A. T.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Hohenau, A.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

Hohenester, U.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Huang, Y. T.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Huang, Y.-T.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jacob, Z.

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Jakopic, G.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

Janícek, P.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jiménez, A.

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Kawata, S.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Kolská, Z.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Kotko, A. V.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Kraemer, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).

Krenn, J. R.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Lapotko, D. O.

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

Lee, H.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Lee, H. W.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Lee, M. C.

Y. J. Chen, M. C. Lee, and C. M. Wang, “Dielectric function dependence on temperature for Au and Ag,” Jpn. J. Appl. Phys. 53(8S2), 08MG02 (2014).
[Crossref]

Lee, M. Y.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Lepage, D.

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

Li, B. Q.

C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Lim, D.-W.

H. R. Moon, D.-W. Lim, and M. P. Suh, “Fabrication of metal nanoparticles in metal-organic frameworks,” Chem. Soc. Rev. 42(4), 1807–1824 (2013).
[Crossref] [PubMed]

Liu, C.

C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Longhi, S.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Ma, Y.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Maier, S. A.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Majewski, M. L.

Marini, A.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Martin, L. W.

McEnaney, K.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Mi, C. C.

C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

Mistrík, J.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Molesky, S.

Moon, H. R.

H. R. Moon, D.-W. Lim, and M. P. Suh, “Fabrication of metal nanoparticles in metal-organic frameworks,” Chem. Soc. Rev. 42(4), 1807–1824 (2013).
[Crossref] [PubMed]

Munjiza, A.

X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
[Crossref]

Muto, A.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Neil, M. A. A.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Neumann, O.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nijhuis, C. A.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Oketani, R.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Pells, G. P.

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. Chem. 2, 1835 (1969).

Polman, A.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Poudel, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Qiu, C. W.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Rakic, A. D.

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Ren, Z.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Opt. Express 2, 30–38 (2007).

Rosei, R.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Russell, P. S. J.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Schmidt, M. A.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Scholz, W.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Seraphin, B. O.

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Solid State Commun. 8(15), 1221–1226 (1970).
[Crossref]

Shalaev, V. M.

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shiga, M.

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. Chem. 2, 1835 (1969).

Shoji, S.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Siegel, J.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Sinclair, H. G.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Sivan, Y.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics (accepted).

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Sonnefraud, Y.

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

Stipe, B. C.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Su, T. Y.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Su, T.-Y.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Suh, M. P.

H. R. Moon, D.-W. Lim, and M. P. Suh, “Fabrication of metal nanoparticles in metal-organic frameworks,” Chem. Soc. Rev. 42(4), 1807–1824 (2013).
[Crossref] [PubMed]

Šutta, P.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Švorcík, V.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Tan, S. F.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Tinguely, J.-C.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

Tr, X. T.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Trügler, A.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

Valle, G. D.

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Vries, J. W. C.

J. W. C. Vries, “Resistivity of thin Au films as a function of grain diameter and temperature,” J. Phys. F 17(9), 1945–1952 (1987).
[Crossref]

Wang, C. M.

Y. J. Chen, M. C. Lee, and C. M. Wang, “Dielectric function dependence on temperature for Au and Ag,” Jpn. J. Appl. Phys. 53(8S2), 08MG02 (2014).
[Crossref]

Wang, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Wang, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Weaver, J. H.

Wen, D.

X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
[Crossref]

Wilson, R. B.

Winsemius, P.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

Worsch, P.

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Wu, H. Y.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Wu, H.-Y.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Xu, X. F.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Yamanaka, M.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Yan, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Yang, J. K. W.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Yeshchenko, O. A.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Yonemaru, Y.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Yu, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Zhang, K.

X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
[Crossref]

Zhang, L.

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Zharov, V. P.

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Zhou, N.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zhuo, G. Y.

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (2)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47, 347–357 (1988).

V. Švorčík, J. Siegel, P. Šutta, J. Mistrík, P. Janíček, P. Worsch, and Z. Kolská, “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys., A Mater. Sci. Process. 102(3), 605–610 (2011).
[Crossref]

Chem. Soc. Rev. (1)

H. R. Moon, D.-W. Lim, and M. P. Suh, “Fabrication of metal nanoparticles in metal-organic frameworks,” Chem. Soc. Rev. 42(4), 1807–1824 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

IEEE Trans. NanoTechnol. (1)

C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. NanoTechnol. 10(4), 797–805 (2011).
[Crossref]

J. Phys. Chem. (1)

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. Chem. 2, 1835 (1969).

J. Phys. Chem. C (1)

X. Chen, A. Munjiza, K. Zhang, and D. Wen, “Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool,” J. Phys. Chem. C 118(2), 1285–1293 (2014).
[Crossref]

J. Phys. F (1)

J. W. C. Vries, “Resistivity of thin Au films as a function of grain diameter and temperature,” J. Phys. F 17(9), 1945–1952 (1987).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. J. Chen, M. C. Lee, and C. M. Wang, “Dielectric function dependence on temperature for Au and Ag,” Jpn. J. Appl. Phys. 53(8S2), 08MG02 (2014).
[Crossref]

Lasers Med. Sci. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Nano Lett. (3)

Y. Sonnefraud, H. G. Sinclair, Y. Sivan, M. R. Foreman, C. W. Dunsby, M. A. A. Neil, P. M. French, and S. A. Maier, “Experimental proof of concept of nanoparticle-assisted STED,” Nano Lett. 14(8), 4449–4453 (2014).
[Crossref] [PubMed]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

D. Lepage, D. Carrier, A. Jiménez, J. Beauvais, and J. J. Dubowski, “Plasmonic propagations distances for interferometric surface plasmon resonance biosensing,” Nanoscale Res. Lett. 6(1), 388 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

New J. Phys. (1)

A. Marini, M. Conforti, G. D. Valle, H. W. Lee, X. T. Tr, W. Chang, M. A. Schmidt, S. Longhi, P. S. J. Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Opt. Express (3)

Philos Trans A Math Phys Eng Sci (1)

W. L. Barnes, “Metallic metamaterials and plasmonics,” Philos Trans A Math Phys Eng Sci 369(1950), 3431–3433 (2011).
[Crossref] [PubMed]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89(16), 165409 (2014).
[Crossref]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12(2), 557–563 (1975).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Phys. Rev. Lett. (1)

S. W. Chu, T. Y. Su, R. Oketani, Y. T. Huang, H. Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G. Y. Zhuo, M. Y. Lee, S. Kawata, and K. Fujita, “Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. W. Yang, “Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures,” Sci. Rep. 4, 5537 (2014).
[Crossref] [PubMed]

Science (1)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Solid State Commun. 8(15), 1221–1226 (1970).
[Crossref]

Surf. Sci. (1)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Other (3)

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics (accepted).

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” https://arxiv.org/abs/1604.00064 .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Gold permittivity at room temperature before and after annealing: (a) the real part ε’ and (b) the imaginary part ε”. Significant variation in the imaginary part is found after annealing. (c) and (d) are SEM images before and after annealing, respectively. Scale bar: 400nm. The grain sizes are much larger after annealing.
Fig. 2
Fig. 2 Temperature-dependent permittivity at selected wavelengths with unannealed gold films: (a) the real part ε’ and (b) the imaginary part ε”. (c) and (d) are the corresponding thermo-derivatives of ε’ and ε”, respectively. For both real and imaginary parts, the thermo-derivatives are larger for longer wavelengths, and increase quickly above 450K.
Fig. 3
Fig. 3 Temperature-dependent permittivity at selected wavelengths with annealed gold films: (a) the real part ε’ and (b) the imaginary part ε”. (c) and (d) are the corresponding thermo-derivatives of ε’ and ε”, respectively. Similar to Fig. 2, for both real and imaginary parts, the thermo-derivatives are larger for longer wavelengths, and increase quickly above 500K. However, different from Fig. 2, the thermo-derivatives are much smaller in the annealed film.
Fig. 4
Fig. 4 The Lorentz-Drude fitting (symbols) compared to experimental result (lines). (a) the real part ε’ and (b) the imaginary part ε” with the unannealed film; (c) the real part ε’, and (d) the imaginary part ε” with the annealed film.
Fig. 5
Fig. 5 Temperature/annealing dependency of scattering cross section spectrum with a 5nm gold shell on a 50nm diamond core. Since the permittivity of unannealed and annealed gold at 570K are very similar to each other, only one line is given at 570K. The plot manifests the importance of annealing effect on the permittivity.
Fig. 6
Fig. 6 AFM profiles for (a) unannealed (b) annealed gold film. The gold grains aggregated after annealing, creating grating-like structures.

Tables (1)

Tables Icon

Table 1 Temperature Dependent Lorentz Drude Parameters of Gold

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε i n t r a ( ω ) + ε i n t e r ( ω )
ε i n t r a ( ω ) = ε ω p 2 ω 2 + i ω Γ D
ε i n t e r ( ω ) = ω p 2 m = 1 k f m ω m 2 ω 2 i ω Γ m

Metrics