Abstract

In this paper we present an extensive theoretical and numerical analysis of monolithic high-index contrast grating, facilitating simple manufacture of compact mirrors for very broad spectrum of vertical-cavity surface-emitting lasers (VCSELs) emitting from ultraviolet to mid-infrared. We provide the theoretical background explaining the phenomenon of high reflectance in monolithic subwavelength gratings. In addition, by using a three-dimensional, fully vectorial optical model, verified by comparison with the experiment, we investigate the optimal parameters of high-index contrast grating enabling more than 99.99% reflectance in the diversity of photonic materials and in the broad range of wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning

Ye Zhou, Michael C. Y. Huang, and Connie J. Chang-Hasnain
Opt. Express 16(18) 14221-14226 (2008)

Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings

E. Haglund, J.S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan
Opt. Express 24(3) 1999-2005 (2016)

High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
    [Crossref]
  2. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
    [Crossref]
  3. C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
    [Crossref]
  4. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am. 31, 213–222 (1941).
    [Crossref]
  5. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  6. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29(13), 2015–2024 (2011).
    [Crossref]
  7. I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
    [Crossref]
  8. R. Wan, V. Karagodsky, and C. J. Chang-Hasnain, “High reflectivity subwavelength metal grating for VCSEL applications,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI93.
  9. K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
    [Crossref]
  10. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
    [Crossref]
  11. J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
    [Crossref] [PubMed]
  12. C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
    [Crossref]
  13. G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
    [Crossref]
  14. S. Uchiyama and S. Kashiwa, “GaInAsP/InP SBH surface emitting laser with Si/Al2O3 mirror,” Electron. Lett. 31(17), 1449–1451 (1995).
    [Crossref]
  15. T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
    [Crossref] [PubMed]
  16. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
    [Crossref]
  17. H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
    [Crossref]
  18. V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
    [Crossref]
  19. M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
    [Crossref]
  20. S. Adachi, Properties of Aluminium Gallium Arsenide (INSPEC; The Institution of Electrical Engineers, 1993)
  21. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer Kluwert Academic, 1999)
  22. M. Dems, “Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs,” Opto-Electron. Rev. 19(3), 340–345 (2011).
    [Crossref]
  23. M. Gębski, M. Dems, J. Chen, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “The influence of imperfections and absorption on the performance of a GaAs/AlOx high-contrast grating for monolithic integration with 980 nm GaAs-based VCSELs,” J. Lightwave Technol. 31(23), 3853–3858 (2013).
    [Crossref]
  24. T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
    [Crossref]
  25. M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
    [Crossref] [PubMed]
  26. T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
    [Crossref]
  27. W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

2014 (3)

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
[Crossref] [PubMed]

2013 (3)

M. Gębski, M. Dems, J. Chen, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “The influence of imperfections and absorption on the performance of a GaAs/AlOx high-contrast grating for monolithic integration with 980 nm GaAs-based VCSELs,” J. Lightwave Technol. 31(23), 3853–3858 (2013).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
[Crossref]

2012 (2)

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

C. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
[Crossref]

2011 (3)

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29(13), 2015–2024 (2011).
[Crossref]

M. Dems, “Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs,” Opto-Electron. Rev. 19(3), 340–345 (2011).
[Crossref]

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (3)

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
[Crossref]

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
[Crossref]

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

2003 (1)

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

2002 (1)

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

1998 (2)

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

1995 (1)

S. Uchiyama and S. Kashiwa, “GaInAsP/InP SBH surface emitting laser with Si/Al2O3 mirror,” Electron. Lett. 31(17), 1449–1451 (1995).
[Crossref]

1941 (1)

Adams, M. J.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Ahn, S.

Baets, R.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Bakir, B. B.

Balkan, N.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Bertness, K. A.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Bimberg, D.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Boland-Thoms, A.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Bordel, D.

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Cannard, P.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Carlin, J.-F.

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Castiglia, A.

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Chang, H.

Chang-Hasnain, C.

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Chelnokov, A.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Chen, J.

Chen, J.-R.

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Choquette, K. D.

M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
[Crossref]

Christensen, D. H.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Chung, I.-S.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Cosendey, G.

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Czyszanowski, T.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. Chen, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “The influence of imperfections and absorption on the performance of a GaAs/AlOx high-contrast grating for monolithic integration with 980 nm GaAs-based VCSELs,” J. Lightwave Technol. 31(23), 3853–3858 (2013).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
[Crossref]

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

Dann, A. J.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Dems, M.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
[Crossref] [PubMed]

M. Gębski, M. Dems, J. Chen, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “The influence of imperfections and absorption on the performance of a GaAs/AlOx high-contrast grating for monolithic integration with 980 nm GaAs-based VCSELs,” J. Lightwave Technol. 31(23), 3853–3858 (2013).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

M. Dems, “Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs,” Opto-Electron. Rev. 19(3), 340–345 (2011).
[Crossref]

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
[Crossref]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Elton, D. J.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Fano, U.

Fedeli, J.

Fisher, M. A.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Frasunkiewicz, L.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Gallo, P.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

Gebski, M.

Gilet, P.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Grandjean, N.

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Harlow, M. J.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Hepburn, C. J.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Huang, S.-W.

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Iakovlev, V.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

Iga, K.

K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
[Crossref]

Jeon, H.

Johnson, M. T.

M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
[Crossref]

Kapon, E.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Kashiwa, S.

S. Uchiyama and S. Kashiwa, “GaInAsP/InP SBH surface emitting laser with Si/Al2O3 mirror,” Electron. Lett. 31(17), 1449–1451 (1995).
[Crossref]

Kim, J.

Knopp, K. J.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Kuzior, O.

Larisch, G.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Lee, J.

Letartre, X.

Li, H.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Lin, S.-C.

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Lott, J. A.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Lu, T.-C.

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Mackowiak, P.

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Mirin, R. P.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Mørk, J.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

Moser, P.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Nakwaski, W.

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Olivier, N.

Panajotov, K.

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
[Crossref]

Park, Y.

Perrin, S. D.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Ramoo, D.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Reed, J.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Regreny, P.

Reid, I.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Rojo-Romeo, P.

Roshko, A.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Rossbach, G.

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Sarzala, R. P.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

Sceats, R.

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Sciancalepore, C.

Seassal, C.

Sirbu, A.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Siriani, D. F.

M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
[Crossref]

Sokól, A. K.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

Synowicki, R. A.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Tan, M. P.

M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
[Crossref]

Thienpont, H.

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
[Crossref]

Uchiyama, S.

S. Uchiyama and S. Kashiwa, “GaInAsP/InP SBH surface emitting laser with Si/Al2O3 mirror,” Electron. Lett. 31(17), 1449–1451 (1995).
[Crossref]

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

Viktorovitch, P.

Volet, N.

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

Walczak, J.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

Wang, Q. J.

Wang, S.-C.

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Wasiak, M.

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
[Crossref] [PubMed]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

Wolf, P.

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Xie, Y. Y.

Xu, Z. J.

Yamamoto, Y.

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Yang, W.

Zhang, D. H.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)xOy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Electron. Lett. (1)

S. Uchiyama and S. Kashiwa, “GaInAsP/InP SBH surface emitting laser with Si/Al2O3 mirror,” Electron. Lett. 31(17), 1449–1451 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. T. Johnson, D. F. Siriani, M. P. Tan, and K. D. Choquette, “High-speed beam steering with phased vertical cavity laser arrays,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701006 (2013).
[Crossref]

T. Czyszanowski, R. P. Sarzała, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial mode discrimination in guided and anti-guided arrays of long wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1702010 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008).
[Crossref]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (2)

V. Iakovlev, J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, R. P. Sarzała, M. Dems, T. Czyszanowski, and E. Kapon, “Double-diamond high-contrast-gratings vertical external cavity surface emitting laser,” J. Phys. D Appl. Phys. 47(6), 065104 (2014).
[Crossref]

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov, “Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL,” J. Phys. D Appl. Phys. 41(8), 085102 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
[Crossref]

Nano Lett. (1)

T.-C. Lu, J.-R. Chen, S.-C. Lin, S.-W. Huang, S.-C. Wang, and Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Opt. Express (2)

Opto-Electron. Rev. (2)

W. Nakwaski, R. P. Sarzala, M. Wasiak, T. Czyszanowski, and P. Mackowiak, “Single-photon devices in quantum cryptography,” Opto-Electron. Rev. 11, 127–132 (2003).

M. Dems, “Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs,” Opto-Electron. Rev. 19(3), 340–345 (2011).
[Crossref]

Proc. SPIE (1)

H. Li, P. Moser, P. Wolf, G. Larisch, L. Frasunkiewicz, M. Dems, T. Czyszanowski, J. A. Lott, and D. Bimberg, “Energy efficiency, bit rate, and modal properties of 980 nm VCSELs for very-short-reach optical interconnects,” Proc. SPIE 9001, 90010B (2014).
[Crossref]

Superlattices Microstruct. (1)

C. J. Hepburn, R. Sceats, D. Ramoo, A. Boland-Thoms, N. Balkan, M. J. Adams, A. J. Dann, S. D. Perrin, I. Reid, J. Reed, P. Cannard, M. A. Fisher, D. J. Elton, and M. J. Harlow, “Temperature dependent operation of 1.5 µm GaInAsP/InP VCSELs,” Superlattices Microstruct. 32(2-3), 103–116 (2002).
[Crossref]

Other (3)

R. Wan, V. Karagodsky, and C. J. Chang-Hasnain, “High reflectivity subwavelength metal grating for VCSEL applications,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI93.

S. Adachi, Properties of Aluminium Gallium Arsenide (INSPEC; The Institution of Electrical Engineers, 1993)

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer Kluwert Academic, 1999)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic illustration of a MHCG with the definition of geometrical parameters: h - height of the stripe, L – period of the grating, s - width of the stripe, a - distance between the stripes, F - fill factor, d - thickness of the substrate. The x-axis of the coordinate system perpendicular to the plane of the figure and parallel to the stripes. Incident light direction is parallel to the z-axis.
Fig. 2
Fig. 2 Refractive index (n) and absorption coefficient (α) as the function of the wavelength λ of four materials: GaAs [20], InP, Si and GaN [21].
Fig. 3
Fig. 3 a) SEM picture of the fabricated GaAs MHCG and b) schematic of the beam path in FTIR used to measurements of the reflectance spectrum.
Fig. 4
Fig. 4 Experimental (red line) and theoretical (other lines) reflectivity spectra of monolithic grating for light polarized parallel to the grating lines. Both the experimental and theoretical results are determined for an incident angle of 12 degree as limited by the experimental setup. The theoretical lines are calculated for different etching depths (h), the dashed line represents the reflectance spectrum in the case of light propagating in GaAs only, while solid lines in the case of additional reflectance at the interface between Air and GaAs.
Fig. 5
Fig. 5 Total grating reflectance (black line) and reflectance of four lowest diffraction orders for the grating shown in Fig. 1 of refractive index 3.52 for (a) TE (L = 817 nm, h = 164 nm, F = 0.35) and (b) TM (L = 497 nm, h = 302 nm, F = 0.50) polarizations. Dashed lines present cut-offs of the consecutive reflected diffraction orders (i.e. the mode is a propagating for the shorter and evanescent for the longer wavelengths).
Fig. 6
Fig. 6 Positions of two 100% reflectance TM peaks (red and blue curves) for the reflecting high-contrast gratings as a function of the cladding refractive index nB with other parameters identical to ones shown in Fig. 5(b). The black line shows the cut-off of the first-order mode i.e. the wavelengths above which only the fundamental reflected mode can transfer energy.
Fig. 7
Fig. 7 The maps of MHCG reflectance (R) based on Si, GaAs, InP and GaN for various wavelengths (λ) and corresponding refractive indices (n). The maps are shown in the domain of wavelength and etching depth normalized to the grating period (λ/L and h/L respectively) for different fill factors (F) for a) TE and b) TM polarizations. The color bars determine the reflectance. Periodic behavior of the reflectance with h for TE and TM configurations relates to Fabry-Perrot resonance taking place in the grating which is exhaustively described in [3].
Fig. 8
Fig. 8 MHCG reflectance (R) in the domain of the period (L) of the stripes and fill factor (F) a) and as the function of the stripes height (h). The parameters (L, F, and h) not shown in respective graphs are set to their optimal values (i.e. the ones assuring maximum reflectance).
Fig. 9
Fig. 9 Distribution of the intensity of the light in TE and TM configurations of MHCGs realized in Si, GaAs, InP and GaN. The geometry of the structures and incident light direction are illustrated in Fig. 1.
Fig. 10
Fig. 10 Normalized spectral RHR (Δλ/λ) of TE a) and TM b) polarizations as the function of the wavelength for considered four photonic materials and TE configuration. The reflectance of TM configuration of GaN MHCG is lower than 99% hence it is not shown in b).
Fig. 11
Fig. 11 Normalized period (L/λ) a), fill factor (F) b) and normalized etching depth (h/λ) c) of optimal MHCG in TE configuration as the function of the wavelength.
Fig. 12
Fig. 12 Maximal reflectance (R) - red curve and normalized spectral RHR (Δλ/λ) – blue curve as the function of the refractive index. The arrows assign the ranges of the refractive indices of particular photonic materials.

Tables (2)

Tables Icon

Table 1 Parameters of MHCG providing the reflectance R = 1-10−7. The parameters in brackets correspond to the absolute values of h and L for the wavelength of 4.7 μm.

Tables Icon

Table 2 Normalized spectral RHR (Δλ/λ) for four analyzed MHCGs, compared to different realizations of HCGs reported previously and a standard arsenide based DBR

Metrics