Abstract

A frequency tripling mirror (FTM) is designed, fabricated and demonstrated. The mirror consists of an aperiodic sequence of metal oxide layers on a fused silica substrate tailored to produce the third harmonic in reflection. An optimized 25-layer structure is predicted to increase the reflected TH by more than five orders of magnitude compared to a single hafnia layer, which is a result of global compensation of the phase mismatch of TH and fundamental, field enhancement and design favoring reflection. Single pulse conversion efficiencies approaching one percent have been observed with the 25-layer stack for fundamental wavelengths in the near infrared and 55 fs pulse duration. The FTM is scalable to higher conversion, larger bandwidths and other wavelength regions making it an attractive novel nonlinear optical component based on optical interference coatings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-insensitive frequency tripling for generating high-average power UV lasers

Haizhe Zhong, Peng Yuan, Shuangchun Wen, and Liejia Qian
Opt. Express 22(4) 4267-4276 (2014)

Broadband frequency tripling in locally ordered nonlinear photonic crystal

Yan Sheng and Wieslaw Krolikowski
Opt. Express 21(4) 4475-4480 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Miyata, V. Petrov, and F. Noack, “High efficiency third harmonic generation in bib3o6,” Opt. Lett. 36, 3627–3629 (2011).
    [Crossref] [PubMed]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  3. R. C. Miller, “Optical harmonic generation in singel crystal batio3,” Phys. Rev. 134, 1313–1319 (1964).
    [Crossref]
  4. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
    [Crossref]
  5. O. Shramkova and A. Schuchinsky, “Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals,” Int. J. RF Microw. Computer-Aided Eng. 22, 469–482 (2012).
    [Crossref]
  6. C. D. Angelis, F. Gringoli, M. Midro, D. Modotto, J. S. Aitchison, and G. F. Nalesso, “Conversion efficiency for second-harmonic generation in photonic crystals,” J. Opt. Soc. Am. B 18, 348–351 (2001).
    [Crossref]
  7. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
    [Crossref] [PubMed]
  8. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
    [Crossref] [PubMed]
  9. L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
    [Crossref]
  10. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
    [Crossref] [PubMed]
  11. C. Rodriguez and W. Rudolph, “Modeling third-harmonic generation from layered materials using nonlinear optical matrices,” Opt. Express 22, 25984–25992 (2014).
    [Crossref] [PubMed]
  12. M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.
  13. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
    [Crossref]
  14. D. Ristau and H. Ehlers, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 11, S10203 (2013).
  15. C. Rodriguez and W. Rudolph, “Characterization and chi(3) measurements of thin films by third-harmonic microscopy,” Opt. Lett. 39, 6042–6045 (2014).
    [Crossref]
  16. M. Dieckmann, “Spektrum, thin film design software,” Tech. Rep., Laser Zentrum Hannover e.V. (1990–2015).
  17. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
    [Crossref]
  18. O. Razskazovskaya, T. T. Luu, M. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear absorbance in dielectric multilayers,” Optica 2, 803–811 (2015).
    [Crossref]
  19. Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
    [Crossref]
  20. D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
    [Crossref]
  21. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
    [Crossref]

2015 (2)

O. Razskazovskaya, T. T. Luu, M. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear absorbance in dielectric multilayers,” Optica 2, 803–811 (2015).
[Crossref]

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

2014 (3)

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

C. Rodriguez and W. Rudolph, “Modeling third-harmonic generation from layered materials using nonlinear optical matrices,” Opt. Express 22, 25984–25992 (2014).
[Crossref] [PubMed]

C. Rodriguez and W. Rudolph, “Characterization and chi(3) measurements of thin films by third-harmonic microscopy,” Opt. Lett. 39, 6042–6045 (2014).
[Crossref]

2013 (2)

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

D. Ristau and H. Ehlers, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 11, S10203 (2013).

2012 (1)

O. Shramkova and A. Schuchinsky, “Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals,” Int. J. RF Microw. Computer-Aided Eng. 22, 469–482 (2012).
[Crossref]

2011 (1)

2010 (1)

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

2007 (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
[Crossref]

2006 (1)

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
[Crossref]

2005 (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

2004 (1)

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

2002 (1)

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

1964 (1)

R. C. Miller, “Optical harmonic generation in singel crystal batio3,” Phys. Rev. 134, 1313–1319 (1964).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Abram, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Aitchison, J. S.

Alasaarela, T.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Angelis, C. D.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Boyd, R. W.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Brener, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Bruns, S.

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Burdack, P.

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Chen, Y.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Decker, M.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Dieckmann, M.

M. Dieckmann, “Spektrum, thin film design software,” Tech. Rep., Laser Zentrum Hannover e.V. (1990–2015).

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Dumeige, Y.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Ehlers, H.

D. Ristau and H. Ehlers, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 11, S10203 (2013).

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
[Crossref]

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Emmert, L. A.

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Fedyanin, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
[Crossref]

Goulielmakis, E.

Gringoli, F.

Gross, T.

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
[Crossref]

Honkanen, S.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Hopkins, B.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
[Crossref]

Jensen, L.

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Jussila, H.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Karvonen, L.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Kieu, K.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Kivshar, Y. S.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Kujala, S.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Lappschies, M.

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
[Crossref]

Lenzner, M.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

Lepeshkin, N. N.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Levenson, A.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Luu, T. T.

Markowicz, P. P.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Mende, M.

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Menoni, C.

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

Meriadiec, C.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

Midro, M.

Miller, R. C.

R. C. Miller, “Optical harmonic generation in singel crystal batio3,” Phys. Rev. 134, 1313–1319 (1964).
[Crossref]

Miroshnichenko, A. E.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Miyata, K.

Modotto, D.

Monnier, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Nalesso, G. F.

Neshev, D. N.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Nguyen, D. N.

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

Noack, F.

Norwood, R. A.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Patel, D.

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Pervak, V.

Petrov, V.

Peyghambarian, N.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Prasad, P. N.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Pudavar, H.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Razskazovskaya, O.

Ristau, D.

D. Ristau and H. Ehlers, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 11, S10203 (2013).

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Rodriguez, C.

Ronn, J.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Rudolph, W.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

C. Rodriguez and W. Rudolph, “Modeling third-harmonic generation from layered materials using nonlinear optical matrices,” Opt. Express 22, 25984–25992 (2014).
[Crossref] [PubMed]

C. Rodriguez and W. Rudolph, “Characterization and chi(3) measurements of thin films by third-harmonic microscopy,” Opt. Lett. 39, 6042–6045 (2014).
[Crossref]

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

Ruoho, M.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Sagnes, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Saynaatjoki, A.

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Schuchinsky, A.

O. Shramkova and A. Schuchinsky, “Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals,” Int. J. RF Microw. Computer-Aided Eng. 22, 469–482 (2012).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Shorokhov, A. S.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Shramkova, O.

O. Shramkova and A. Schuchinsky, “Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals,” Int. J. RF Microw. Computer-Aided Eng. 22, 469–482 (2012).
[Crossref]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

Staude, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Sun, Z.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

Tiryaki, H.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Trubetskov, M.

Verghl, M.

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

Vidakovic, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Appl. Optics (1)

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Optics 45, 1405–1501 (2006).
[Crossref]

Appl. Phys. Lett. (2)

L. Karvonen, A. Saynaatjoki, Y. Chen, H. Jussila, J. Ronn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

D. N. Nguyen, L. A. Emmert, D. Patel, C. Menoni, and W. Rudolph, “Transient phenomoma in the dielectric breakdown of hafnia optical films probed by ultrafast laser pulse pairs,” Appl. Phys. Lett. 97, 191909 (2010).
[Crossref]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Chin. Opt. Lett. (1)

D. Ristau and H. Ehlers, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 11, S10203 (2013).

Comptes Rendus Physique (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
[Crossref]

Int. J. RF Microw. Computer-Aided Eng. (1)

O. Shramkova and A. Schuchinsky, “Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals,” Int. J. RF Microw. Computer-Aided Eng. 22, 469–482 (2012).
[Crossref]

J. Appl. Phys. (1)

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Phys. Rev. (2)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

R. C. Miller, “Optical harmonic generation in singel crystal batio3,” Phys. Rev. 134, 1313–1319 (1964).
[Crossref]

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 1151091 (2005).
[Crossref]

Phys. Rev. Lett (1)

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals,” Phys. Rev. Lett 92, 083903 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadiec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[Crossref] [PubMed]

Other (2)

M. Mende, L. Jensen, H. Ehlers, S. Bruns, M. Verghl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold for third harmonic generation optics,” in Proceedings of the 44th Annual Symposium on Laser-Induced Damage in Optical Materials, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (SPIE, 2012), pp. 51.

M. Dieckmann, “Spektrum, thin film design software,” Tech. Rep., Laser Zentrum Hannover e.V. (1990–2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Photo of an experimental setup demonstrating the operation of a frequency tripling mirror (FTM) and schematic diagram of the beam propagation. A train of femtosecond pulses (791 nm, 55 fs, 100 MHz) was focused onto the FTM with a parabolic mirror. The TH in reflection produces a fluorescence signal from a white card. The experimental data presented later were obtained with a focusing lens replacing the parabolic mirror.
Fig. 2
Fig. 2 (a) Schematic diagram of the film stack of a frequency tripling mirror with 25 layers, and intensity distribution of a monochromatic incident wave (λF = 787 nm). The layer stack consists of alternating films of HfxAlyO (dark stripes) and SiO2 deposited on a substrate (fused silica). Transmission spectra in the (b) near IR and (c) UV of the design (dashed line) and actual sample (solid line). Linear absorption in the stack is negligibly small. The relative, measured THG conversion efficiency (data points) is also shown as function of the fundamental peak wavelength in (b), see text. The vertical arrows indicate the peak wavelength of the fundamental and TH spectrum at maximum conversion according to the design.
Fig. 3
Fig. 3 Experimental setup to demonstrate the frequency tripling mirror (FTM). The Ti:sapphire laser delivered 55-fs pulses at 100 MHz. PD - avalanche photodiode.
Fig. 4
Fig. 4 Third-harmonic signal as a function of the input pulse energy for an FTM with 25 layers [(HfxAlyO/SiO2)12HfxAlyO] deposited on a fused silica substrate. In the low-(high) energy region, data were taken with pulse trains (single pulses). The solid line shows a cubic dependence.
Fig. 5
Fig. 5 Predicted TH signal of frequency tripling mirrors as a function of the number N of layers. The sample with 10 layers contains a 30-nm Al film between the dielectric layer stack and the substrate, see text. The measurement points refer to pulse trains with a single pulse fluence of about 0.01 J/cm2 for which incubation was not observed. The high-index material of the 25- and 35-layer sample was HfxAlyO, it was HfO2 for all other samples. The two lines, anchored arbitrarily at N = 3, show the N5 and N6 dependencies as guide for the eye. The data point for a single layer refers to a 377-nm thick hafnia film.

Metrics