Abstract

A novel high-efficiency silicon-chip-to-fiber grating coupler is investigated here. By introducing a dual layer grating structure with an inter-layer lateral shift to mimic 45° tilted mirror behavior, perfectly vertical coupling is successfully demonstrated. Our numerical results show that a peak silicon-chip-to-fiber coupling efficiency about 70% is possible near 1550 nm. Meanwhile, for the entire telecom C-band, i.e. wavelengths from 1530 nm to 1565 nm, the coupling efficiency is > 50% and the back reflection is less than < 1%. Our proposed high-performance silicon perfectly vertical coupling structure is suitable for interfacing with multi-core fiber platform, which may play an important role in the future CMOS photonic integration technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact high-efficiency perfectly-vertical grating coupler on silicon at O-band

Siya Wang, Yue Hong, Yuntao Zhu, Jingye Chen, Shengqian Gao, Xinlun Cai, Yaocheng Shi, and Liu Liu
Opt. Express 25(18) 22032-22037 (2017)

Inverse design of near unity efficiency perfectly vertical grating couplers

Andrew Michaels and Eli Yablonovitch
Opt. Express 26(4) 4766-4779 (2018)

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens
Opt. Express 18(17) 18278-18283 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  2. C. Doerr and T. Taunay, “Silicon Photonics Core-, Wavelength-, and Polarization-Diversity Receiver,” IEEE Photon. Technol. Lett. 23(9), 597–599 (2011).
    [Crossref]
  3. Y. Ding, F. Ye, C. Peucheret, H. Ou, Y. Miyamoto, and T. Morioka, “On-chip grating coupler array on the SOI platform for fan-in/fan-out of multi-core bers with low insertion lossand crosstalk, ” in ECOC2014, paper We.1.1.3.
  4. N. Fontaine, C. Doerr, M. Mestre, R. Ryf, P. Winzer, L. Buhl, Y. Sun, X. Jiang, and R. Lingle, Jr., “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in OFC/NFOEC2012, paper PDP5B.1.
  5. Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
    [Crossref] [PubMed]
  6. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [Crossref]
  7. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  8. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
    [Crossref] [PubMed]
  9. X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
    [Crossref]
  10. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  11. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [Crossref]
  12. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  13. Z. Xiao, F. Luan, T.-Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Opt. Lett. 37(4), 530–532 (2012).
    [Crossref] [PubMed]
  14. B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
    [Crossref]
  15. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
    [Crossref] [PubMed]
  16. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  17. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  18. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
    [Crossref] [PubMed]
  19. J. Covey and R. T. Chen, “Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides,” Opt. Express 21(9), 10886–10896 (2013).
    [Crossref] [PubMed]
  20. K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20(17), 18545–18554 (2012).
    [Crossref] [PubMed]
  21. K. Li, G. Li, F. Lu, and A. Xu, “Compact, Broadband, and Wide-Angle Optical Coupling for Silicon Waveguide,” IEEE Photon. J. 4(6), 2116–2125 (2012).
    [Crossref]
  22. Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
    [Crossref]
  23. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
    [Crossref] [PubMed]
  24. www.nikon.com .
  25. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
    [Crossref] [PubMed]
  26. R. Topley, L. O’Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express 22(1), 1077–1084 (2014).
    [PubMed]
  27. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
    [Crossref]
  28. J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20(7), 7243–7254 (2012).
    [Crossref] [PubMed]
  29. D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, “Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration,” Opt. Express 20(19), 21722–21728 (2012).
    [Crossref] [PubMed]
  30. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
    [Crossref] [PubMed]
  31. R. Meade, O. Tehar-Zahav, Z. Sternberg, E. Megged, G. Sandhu, J. S. Orcutt, R. Ram, V. Stojanovic, M. R. Watts, E. Timurdogan, J. Shainline, and M. Popovic, “Integration of silicon photonics in a bulk CMOS memory flow,” in IEEE Optical Interconnects Conference2013, paper WC1.
    [Crossref]
  32. A. Shastri, M. Webster, G. Jeans, P. Metz, S. Sunder, B. Chattin, B. Dama, and K. Shatri, “Experimental Demonstration of Ultra-Low-Power Single Polarization 56 Gb/s QAM-16 Generation without DAC using CMOS Photonics,” in ECOC2014, paper PD.2.5.

2014 (2)

2013 (2)

J. Covey and R. T. Chen, “Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides,” Opt. Express 21(9), 10886–10896 (2013).
[Crossref] [PubMed]

Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

2012 (6)

2011 (5)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

C. Doerr and T. Taunay, “Silicon Photonics Core-, Wavelength-, and Polarization-Diversity Receiver,” IEEE Photon. Technol. Lett. 23(9), 597–599 (2011).
[Crossref]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
[Crossref] [PubMed]

2010 (6)

2009 (1)

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

2007 (2)

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2005 (1)

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

2004 (1)

Absil, P.

Antelius, M.

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Ayre, M.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Baets, G.

Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

Baets, R.

Bedard, D.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

Bogaerts, W.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Cheben, P.

Chen, R. T.

Chen, X.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Cheng, Z.

Covey, J.

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

De Koninck, Y.

Densmore, A.

Dimarcello, F. V.

Doerr, C.

C. Doerr and T. Taunay, “Silicon Photonics Core-, Wavelength-, and Polarization-Diversity Receiver,” IEEE Photon. Technol. Lett. 23(9), 597–599 (2011).
[Crossref]

Dumon, P.

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Feldesh, R.

Fini, J. M.

Fishteyn, M.

Fung, C. K.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Gardes, F. Y.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Gwilliam, R.

Gylfason, K. B.

Halir, R.

Henley, S. J.

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Hosseini, A.

Hu, Y.

Janz, S.

Jiang, J. H.

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

Jones, R.

Kramer, S.

Krauss, T. F.

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Kwong, D.

Kwong, D. L.

Lambert, E.

Lapointe, J.

Lepage, G.

Li, C.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Li, G.

Li, H.

Li, K.

Li, L.

Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

Li, Y.

Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
[Crossref] [PubMed]

Liow, T.-Y.

Lo, G. Q.

Lo, S. M.

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Loiacono, R.

Lu, F.

Luan, F.

Ma, R.

Mashanovich, G. Z.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Mehta, K.

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Molina-Fernández, I.

Monberg, E. M.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Nordin, G. P.

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

O’Faolain, L.

Orcutt, J. S.

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Ram, R. J.

Reed, G. T.

Roelkens, G.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Schaekers, M.

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Schmid, J. H.

Schrauwen, J.

Selvaraja, K.

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Selvaraja, S.

Shum, P.

Sleeckx, E.

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Sohlström, H.

Stojanovic, V.

Taillaert, D.

Tang, S. D.

Taunay, T.

C. Doerr and T. Taunay, “Silicon Photonics Core-, Wavelength-, and Polarization-Diversity Receiver,” IEEE Photon. Technol. Lett. 23(9), 597–599 (2011).
[Crossref]

Taunay, T. F.

Thomson, D. J.

Thourhout, D. V.

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Tian, B.

Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

Topley, R.

Tsang, H. K.

Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206–2209 (2014).
[Crossref] [PubMed]

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

Van Laere, F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Wang, B.

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

Wang, Z.

Xiao, F.

Xiao, Z.

Xu, A.

Xu, D. X.

Xu, X.

Yan, M. F.

Zhang, J.

Zhang, Y.

Zhu, B.

Zhu, S.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

IEEE Photon. J. (1)

K. Li, G. Li, F. Lu, and A. Xu, “Compact, Broadband, and Wide-Angle Optical Coupling for Silicon Waveguide,” IEEE Photon. J. 4(6), 2116–2125 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (4)

Y. Li, L. Li, B. Tian, G. Roelkens, and G. Baets, “Reflectionless Tilted Grating Couplers With Improved Coupling Efficiency Based on a Silicon Overlay,” IEEE Photon. Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

X. Chen, C. Li, C. K. Fung, S. M. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett. 22(15), 1156–1158 (2010).
[Crossref]

C. Doerr and T. Taunay, “Silicon Photonics Core-, Wavelength-, and Polarization-Diversity Receiver,” IEEE Photon. Technol. Lett. 23(9), 597–599 (2011).
[Crossref]

B. Wang, J. H. Jiang, and G. P. Nordin, “Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Nat. Photonics (2)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Opt. Commun. (1)

K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Opt. Express (11)

J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20(7), 7243–7254 (2012).
[Crossref] [PubMed]

D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, “Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration,” Opt. Express 20(19), 21722–21728 (2012).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
[Crossref] [PubMed]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
[Crossref] [PubMed]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19(11), 10728–10734 (2011).
[Crossref] [PubMed]

R. Topley, L. O’Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express 22(1), 1077–1084 (2014).
[PubMed]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
[Crossref] [PubMed]

J. Covey and R. T. Chen, “Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides,” Opt. Express 21(9), 10886–10896 (2013).
[Crossref] [PubMed]

K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20(17), 18545–18554 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Other (5)

Y. Ding, F. Ye, C. Peucheret, H. Ou, Y. Miyamoto, and T. Morioka, “On-chip grating coupler array on the SOI platform for fan-in/fan-out of multi-core bers with low insertion lossand crosstalk, ” in ECOC2014, paper We.1.1.3.

N. Fontaine, C. Doerr, M. Mestre, R. Ryf, P. Winzer, L. Buhl, Y. Sun, X. Jiang, and R. Lingle, Jr., “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in OFC/NFOEC2012, paper PDP5B.1.

www.nikon.com .

R. Meade, O. Tehar-Zahav, Z. Sternberg, E. Megged, G. Sandhu, J. S. Orcutt, R. Ram, V. Stojanovic, M. R. Watts, E. Timurdogan, J. Shainline, and M. Popovic, “Integration of silicon photonics in a bulk CMOS memory flow,” in IEEE Optical Interconnects Conference2013, paper WC1.
[Crossref]

A. Shastri, M. Webster, G. Jeans, P. Metz, S. Sunder, B. Chattin, B. Dama, and K. Shatri, “Experimental Demonstration of Ultra-Low-Power Single Polarization 56 Gb/s QAM-16 Generation without DAC using CMOS Photonics,” in ECOC2014, paper PD.2.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) An artistic representation for our conceptual photonic IC packing scheme based on our proposed chip-to-fiber coupler structure. The axis of the multicore fiber is perfectly normal/vertical with respect to substrate. The fiber is fed into the coupling region through an optical via fabricated by etching through a silicon oxide layer. (b) A detailed cross-section view of our proposed dual layer grating structure.
Fig. 2
Fig. 2 Illustration of directional optical scattering: (a) into upward direction, (b) into downward direction. (c) Illustration of perfectly vertical scattering with a flat horizontal wave-front. In (a) and (b), s refers to the lateral shift between the two grating layers and h refers to the height of each grating layer.
Fig. 3
Fig. 3 (a) Chip-to-fiber coupling efficiency contour at a wavelength of 1550 nm obtained from 3D FDTD simulations. (b) Wavelength-dependent coupling efficiency for coupling into air (purple curve), buried oxide (yellow curve). (c) Wavelength-dependent coupling efficiency into the fiber (red curve) and back-propagating waveguide mode (blue curve).
Fig. 4
Fig. 4 Transverse field distribution obtained from 3D FDTD simulations (a)-(c) and the corresponding phase (d)-(f) distribution for our proposed dual-layer grating structure with optimized geometric parameters, i.e., grating period of 565 nm and duty cycle of 0.77 at three different wavelengths, 1500 nm, 1550 nm and 1600 nm respectively.
Fig. 5
Fig. 5 coupling efficiency as a function of (a) grating period, (b) duty cycle, and (c) lateral shift. Red dashed lines indicate optimized grating parameter values.

Metrics