Abstract

This paper presents a theoretical investigation of a novel holey fiber (Photonic Crystal Fiber (PCF)) multi-channel biosensor based on surface plasmon resonance (SPR). The large gold coated micro fluidic channels and elliptical air hole design of our proposed biosensor aided by a high refractive index over layer in two channels enables operation in two modes; multi analyte sensing and self-referencing mode. Loss spectra, dispersion and detection capability of our proposed biosensor for the two fundamental modes (HE11x and HE11y) have been elucidated using a Finite Element Method (FEM) and Perfectly Matching Layers (PML).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment

E. K. Akowuah, T. Gorman, S. Haxha, and J. V. Oliver
Opt. Express 18(24) 24412-24422 (2010)

Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber

Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang
Opt. Express 25(17) 20313-20322 (2017)

Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor

Firoz Haider, Rifat Ahmmed Aoni, Rajib Ahmed, and Andrey E. Miroshnichenko
J. Opt. Soc. Am. B 35(11) 2816-2821 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
    [Crossref]
  2. A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” Sensors Journal, IEEE 7(8), 1118–1129 (2007).
    [Crossref]
  3. W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
    [Crossref]
  4. B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
    [Crossref]
  5. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [Crossref] [PubMed]
  6. Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19(23), 22863–22873 (2011).
    [Crossref] [PubMed]
  7. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” JOSA B 24(6), 1423–1429 (2007).
    [Crossref]
  8. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [Crossref] [PubMed]
  9. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
    [Crossref]
  10. N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Jpn. J. Appl. Phys. 44(35), L1134–L1137 (2005).
    [Crossref]
  11. P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  12. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber and Integrated Optics 19(3), 211–227 (2000).
    [Crossref]
  13. I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO 3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
    [Crossref] [PubMed]
  14. J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photon. Technol. Lett. 26(6), 595–598 (2014).
    [Crossref]
  15. Y. Zhao, Z.- Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
    [Crossref]
  16. S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
    [Crossref]
  17. D. Ristau and H. Ehlers, “Thin Film Optical Coatings,” in Springer Handbook of Lasers and Optics(Springer, 2012), pp. 401–424.
  18. W. Sellmeier, “Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen,” Annalen der Physik und Chemie 219(6), 272–282 (1871).
    [Crossref]
  19. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [Crossref] [PubMed]
  20. E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
    [Crossref]
  21. J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
    [Crossref]
  22. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
    [Crossref] [PubMed]
  23. H. Ademgil, S. Haxha, T. Gorman, and F. AbdelMalek, “Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 27(5), 559–567 (2009).
    [Crossref]
  24. P. Falkenstein and B. L. Justus, “Fused array preform fabrication of holey optical fibers,” (Google Patents, 2013).
  25. B. T. Kuhlmey, B. J. Eggleton, and D. K. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]
  26. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
    [Crossref]
  27. A. Schwuchow, M. Zobel, A. Csaki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
    [Crossref]
  28. A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
    [Crossref]
  29. J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1-2), 758–764 (2005).
    [Crossref]
  30. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  31. M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg, and H. Simonsen, “Low-loss photonic crystal fibers for transmission systems and their dispersion properties,” Opt. Express 12(7), 1372–1376 (2004).
    [Crossref] [PubMed]

2014 (4)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO 3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
[Crossref] [PubMed]

J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photon. Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

Y. Zhao, Z.- Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

2013 (1)

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

2012 (4)

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

A. Schwuchow, M. Zobel, A. Csaki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

2011 (2)

2010 (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

2009 (2)

2008 (2)

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref] [PubMed]

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

2007 (3)

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” Sensors Journal, IEEE 7(8), 1118–1129 (2007).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” JOSA B 24(6), 1423–1429 (2007).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

2006 (1)

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

2005 (3)

N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Jpn. J. Appl. Phys. 44(35), L1134–L1137 (2005).
[Crossref]

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1-2), 758–764 (2005).
[Crossref]

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

2000 (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber and Integrated Optics 19(3), 211–227 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1871 (1)

W. Sellmeier, “Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen,” Annalen der Physik und Chemie 219(6), 272–282 (1871).
[Crossref]

AbdelMalek, F.

Ademgil, H.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

H. Ademgil, S. Haxha, T. Gorman, and F. AbdelMalek, “Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 27(5), 559–567 (2009).
[Crossref]

Akowuah, E. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

Amezcua-Correa, A.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Aussenegg, F. R.

Badding, J. V.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Baril, N. F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Charlton, M.

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Chen, M.-Y.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Crespi, V. H.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Csaki, A.

Dash, J. N.

J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photon. Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

Deng, Z.-

Y. Zhao, Z.- Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Ditlbacher, H.

Dostálek, J.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1-2), 758–764 (2005).
[Crossref]

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

Eggleton, B. J.

Fassi Fehri, M.

Fehri, M. F.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Finlayson, C. E.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Folkenberg, J.

Fritzsche, W.

Galler, N.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gauvreau, B.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

Gopalan, V.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Gorman, T.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

H. Ademgil, S. Haxha, T. Gorman, and F. AbdelMalek, “Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 27(5), 559–567 (2009).
[Crossref]

Gupta, B.

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” Sensors Journal, IEEE 7(8), 1118–1129 (2007).
[Crossref]

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Harrington, J. A.

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber and Integrated Optics 19(3), 211–227 (2000).
[Crossref]

Hasegawa, T.

Hassani, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” JOSA B 24(6), 1423–1429 (2007).
[Crossref]

Haxha, S.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

H. Ademgil, S. Haxha, T. Gorman, and F. AbdelMalek, “Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 27(5), 559–567 (2009).
[Crossref]

Hayes, J. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Hiltunen, J.

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Hohenau, A.

Homola, J.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1-2), 758–764 (2005).
[Crossref]

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Jackson, B. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jacobsen, C.

Jha, R.

J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photon. Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” Sensors Journal, IEEE 7(8), 1118–1129 (2007).
[Crossref]

Joly, N. Y.

Kabashin, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

Kawata, S.

N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Jpn. J. Appl. Phys. 44(35), L1134–L1137 (2005).
[Crossref]

Kobelke, J.

Koller, D. M.

Konidakis, I.

Koshiba, M.

Krenn, J. R.

Kuhlmey, B. T.

Lappalainen, J.

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Lee, H. W.

Leitner, A.

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, J.

Y. Zhao, Z.- Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Li, S.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Liu, D.

Liu, J.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

Lu, H. B.

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

Lu, Z.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

Margine, E. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Mortensen, N.

Nenninger, G. G.

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Nielsen, M.

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Oliver, J. V.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Pearce, S.

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Pissadakis, S.

Puustinen, J.

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Qin, W.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Robinson, G. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

Russell, P. S. J.

Saitoh, K.

Sasaoka, E.

Sazio, P. J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scharrer, M.

Scheidemantel, T. J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Schmidt, M. A.

Schröder, K.

Schuster, K.

Schwuchow, A.

Sellmeier, W.

W. Sellmeier, “Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen,” Annalen der Physik und Chemie 219(6), 272–282 (1871).
[Crossref]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” Sensors Journal, IEEE 7(8), 1118–1129 (2007).
[Crossref]

Shum, P.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Simonsen, H.

Skorobogatiy, M.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” JOSA B 24(6), 1423–1429 (2007).
[Crossref]

Skorobogatiy, M. A.

Sørensen, T.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Sun, B.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Takeyasu, N.

N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Jpn. J. Appl. Phys. 44(35), L1134–L1137 (2005).
[Crossref]

Tanaka, T.

N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Jpn. J. Appl. Phys. 44(35), L1134–L1137 (2005).
[Crossref]

Tyagi, H.

Uebel, P.

Vaisocherova, H.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1-2), 758–764 (2005).
[Crossref]

Wan, Y.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

Wilkinson, J.

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Won, D.-J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Wu, D. K.

Xia, L.

Xin, X.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Xue, J.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Yao, Y.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Yee, S. S.

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yu, X.

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19(23), 22863–22873 (2011).
[Crossref] [PubMed]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Zhang, F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19(23), 22863–22873 (2011).
[Crossref] [PubMed]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Zhang, Y.-K.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, Z.- Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Zheng, Z.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

Zhou, C.

Zhou, J.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Zhu, J.

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

Zito, G.

Zobel, M.

Annalen der Physik und Chemie (1)

W. Sellmeier, “Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen,” Annalen der Physik und Chemie 219(6), 272–282 (1871).
[Crossref]

Electromagnetics (1)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Fiber and Integrated Optics (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber and Integrated Optics 19(3), 211–227 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. N. Dash and R. Jha, “SPR Biosensor Based on Polymer PCF Coated With Conducting Metal Oxide,” IEEE Photon. Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

JOSA B (1)

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” JOSA B 24(6), 1423–1429 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Takeyasu, T. Tanaka, and S. Kawata, “Metal deposition deep into microstructure by electroless plating,” Jpn. J. Appl. Phys. 44(35), L1134–L1137 (2005).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Plasmonics (1)

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Quantum Electronics, IEEE Journal of (1)

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” Quantum Electronics, IEEE Journal of 48(11), 1403–1410 (2012).
[Crossref]

Science (1)

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Sens. Actuators B Chem. (5)

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostálek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1-3), 403–410 (2001).
[Crossref]

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1-2), 758–764 (2005).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Y. Wan, Z. Zheng, Z. Lu, J. Liu, and J. Zhu, “Self-referenced sensing based on a waveguide-coupled surface plasmon resonance structure for background-free detection,” Sens. Actuators B Chem. 162(1), 35–42 (2012).
[Crossref]

Y. Zhao, Z.- Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Sensors Journal, IEEE (1)

A. K. Sharma, R. Jha, and B. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” Sensors Journal, IEEE 7(8), 1118–1129 (2007).
[Crossref]

Surf. Coat. Tech. (1)

S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, “Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguide applications,” Surf. Coat. Tech. 206(23), 4930–4939 (2012).
[Crossref]

Other (2)

D. Ristau and H. Ehlers, “Thin Film Optical Coatings,” in Springer Handbook of Lasers and Optics(Springer, 2012), pp. 401–424.

P. Falkenstein and B. L. Justus, “Fused array preform fabrication of holey optical fibers,” (Google Patents, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of biosensor showing various components.(b)Meshed module for numerical computation. (c) A schematic in, reflection mode, of the experimental setup
Fig. 2
Fig. 2 Loss curve and dispersion relationship between the core guided mode and the plasmon modes at resonant wavelength. For x-polarized and y-polarized fundamental modes. (a) and (b) are magnetic field distributions of plasmon mode.(c)and(d) are magnetic field distributions of core guided mode at the resonance wavelength.
Fig. 3
Fig. 3 Dispersion relationship of fundamental mode with and without a layer of metal
Fig. 4
Fig. 4 Multi analyte operation of biosensor showing loss spectra of x and y polarizations of the fundamental modes ( H E 11 x and H E 11 y ). Attenuation peaks correspond to excited plasmons on the gold surface. The change of line type correspond to change in analytes in both runs.
Fig. 5
Fig. 5 Self-referencing operation of biosensor showing loss spectra of x and y polarizations of the fundamental modes ( H E 11 x and H E 11 y )
Fig. 6
Fig. 6 Dependence of resonance peak wavelength on central air hole for H E 11 x and H E 11 y (inserts (a) and (c)). Insert (b) displays dispersion trend for varying central air hole for H E 11 x and H E 11 y .Result on display are for the biosensor operating in self-referencing mode
Fig. 7
Fig. 7 Effect of variation of gold thickness on loss for proposed PCF biosensor operating in self-referencing mode (inserts (a) and (b)) for H E 11 x and H E 11 y modes. The dependence of loss spectra on overlay thickness is also displayed in insert (c).
Fig. 8
Fig. 8 Relationship between amplitude sensitivity and gold layer thickness of the PCF biosensor for varying tAu
Fig. 9
Fig. 9 Resonant wavelength dependence on gold thickness and analyte refractive index

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n(λ)= 1+ B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3
n T a 2 O 5 =1.88+178.4× 10 2 / λ 2 +52.7× 10 7 / λ 4
L=8.686× 2π λ(μm) Im( n eff )× 10 4 dB/cm
n A (λ)=(α(λ, n a )/ n a )/α(λ, n a ) per refractive index units [ RIU 1 ] 
S λ (λ)= λ peak n a [nm/RIU]

Metrics