Abstract

The paper has theoretically evaluated a signal-signal beat interference (SSBI) cancellation receiver with the balanced detection (ICRBD) for single sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) signal, which has an improved spectral efficiency (SE) by reducing the guard band (GB) between the OOFDM signal and the optical carrier. The influences of the parameters of the interleaver (IL), the optical coupler (OC), and the balanced photodiodes (BPD) as well as the connecting optical/electrical paths in the ICRBD on the received OFDM signal performance are studied in detail. The theoretical results show that the received OFDM signal and noise power are dependent on the parameters of the devices and their deviation away from the ideal value degrades the performance greatly. Based on the simulation system, the 40Gb/s 16QAM SSB-OOFDM signal with 5GHz GB is converted to the OFDM signal by the ICRBD with the suppressed SSBI. It is observed that (1) the received OFDM signal is insensitive to the deviation of the coupling coefficient of the 3dB OC; (2) the received signal suffers little degradation from the filter outline of the IL if an IL with the bandwidth over 13GHz and 6- or higher-order Gaussian filter is used; (3) the polarization deviation and phase shift between the OOFDM signal and the optical carrier caused by the optical paths between IL and OC have smaller influence on the EVM of the received signal; and (4) although the ICRBD is immune to the polarization deviation of the two recombined SSB-OOFDM signals, the relative time delay between the two optical/electrical paths from the OC to the BPD degrades the received signal seriously. By tuning the time delay in optical or electrical domain to reduce the total relative time delay within 10ps, the EVM maintains below 20%. The simulation results agree well with the theoretical analysis and catch an insight on the mechanism of the ICRBD.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, T. Lotz, P. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative- polarmodulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” in Optical Fiber Communication Conference and Exposition, 2012, paper PDP5B.3.
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [Crossref]
  3. Q. Yang, Z. He, Z. Yang, S. Yu, X. Yi, and W. Shieh, “Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing,” Opt. Express 20(3), 2379–2385 (2012).
    [Crossref] [PubMed]
  4. X. Yi, N. Fontaine, R. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Technol. 28(14), 2054–2061 (2010).
    [Crossref]
  5. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [Crossref]
  6. J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett. 23(15), 1061–1063 (2011).
    [Crossref]
  7. Z. Cao, F. Li, Y. Liu, J. Yu, Q. Wang, C. W. Oh, Y. Jiao, N. C. Tran, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing,” J. Lightwave Technol. 32(19), 3227–3233 (2014).
    [Crossref]
  8. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
    [Crossref] [PubMed]
  9. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  10. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [Crossref] [PubMed]
  11. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [Crossref]
  12. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
    [Crossref] [PubMed]
  13. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
    [Crossref]
  14. W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27(24), 5723–5735 (2009).
    [Crossref]
  15. P. Yang, H. Shi, and X. Chen, “A Novel Algorithm for SSBI Mitigation in a DD-SSB-OFDM Transmission System,” in ACP/IPOC 2013, AW3F.4.
  16. A. Li, D. Che, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “61 Gbits/s direct-detection optical OFDM based on blockwise signal phase switching with signal-to-signal beat noise cancellation,” Opt. Lett. 38(14), 2614–2616 (2013).
    [Crossref] [PubMed]
  17. F. Li, Z. Cao, J. Yu, X. Li, and L. Chen, “SSMI cancellation in direct-detection optical OFDM with novel half-cycled OFDM,” Opt. Express 21(23), 28543–28549 (2013).
    [Crossref] [PubMed]
  18. Z. Cao, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “Interleaved and partial transmission interleaved optical coherent orthogonal frequency division multiplexing,” Opt. Lett. 39(7), 2179–2182 (2014).
    [Crossref] [PubMed]
  19. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-etection optical OFDM,” in Optical Fiber Communication Conference, 2009, paper PDPC3.
    [Crossref]
  20. L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in Optical Fiber Communication Conference, 2008, paper OMU4.
    [Crossref]
  21. W. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication (ECOC 2010), paper Tu.4.A.2.
    [Crossref]
  22. S. A. Nezamalhosseini, L. R. Chen, Q. Zhuge, M. Malekiha, F. Marvasti, and D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21(13), 15237–15246 (2013).
    [Crossref] [PubMed]
  23. J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals,” Opt. Express 21(23), 28154–28166 (2013).
    [Crossref] [PubMed]
  24. J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335–4338 (2013).
    [Crossref] [PubMed]
  25. Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
    [Crossref]
  26. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in the proceedings of 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411, 19–21 December 2006, Dhaka, Bangladesh.
    [Crossref]

2014 (2)

2013 (7)

S. A. Nezamalhosseini, L. R. Chen, Q. Zhuge, M. Malekiha, F. Marvasti, and D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21(13), 15237–15246 (2013).
[Crossref] [PubMed]

J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals,” Opt. Express 21(23), 28154–28166 (2013).
[Crossref] [PubMed]

J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335–4338 (2013).
[Crossref] [PubMed]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
[Crossref] [PubMed]

A. Li, D. Che, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “61 Gbits/s direct-detection optical OFDM based on blockwise signal phase switching with signal-to-signal beat noise cancellation,” Opt. Lett. 38(14), 2614–2616 (2013).
[Crossref] [PubMed]

F. Li, Z. Cao, J. Yu, X. Li, and L. Chen, “SSMI cancellation in direct-detection optical OFDM with novel half-cycled OFDM,” Opt. Express 21(23), 28543–28549 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett. 23(15), 1061–1063 (2011).
[Crossref]

2010 (3)

2009 (3)

2006 (2)

Arbab, V. R.

Armstrong, J.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Cao, Z.

Che, D.

Chen, L.

F. Li, Z. Cao, J. Yu, X. Li, and L. Chen, “SSMI cancellation in direct-detection optical OFDM with novel half-cycled OFDM,” Opt. Express 21(23), 28543–28549 (2013).
[Crossref] [PubMed]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[Crossref]

Chen, L. R.

Chen, S.

Chen, X.

Chen, Y.-W.

Chi, N.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett. 23(15), 1061–1063 (2011).
[Crossref]

Chi, S.

Christen, L. C.

Djordjevic, I. B.

Dong, Z.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett. 23(15), 1061–1063 (2011).
[Crossref]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[Crossref]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Feng, K.-M.

Fontaine, N.

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

He, Z.

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hu, Q.

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Jiao, Y.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koonen, A. M. J.

Koonen, T.

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, A.

Li, F.

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, X.

Liu, Y.

Lowery, A. J.

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ma, J.

Ma, Y.

Malekiha, M.

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Marvasti, F.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nakazawa, M.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nezamalhosseini, S. A.

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Oh, C. W.

Omiya, T.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Peng, W.-R.

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Plant, D. V.

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Scott, R.

Shamee, B.

Shen, K.-H.

Shieh, W.

Shu, Q.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Tang, Q.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Tang, Y.

Tangdiongga, E.

Tran, N. C.

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

van den Boom, H. P. A.

Vasic, B.

Wang, Q.

Wang, W.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[Crossref]

Wang, Y.

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Willner, A. E.

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wu, X.

Yan, J.-H.

Yang, J.-Y.

Yang, Q.

Yang, Z.

Yi, X.

Yoo, S.

Yoshida, M.

Yu, J.

Z. Cao, F. Li, Y. Liu, J. Yu, Q. Wang, C. W. Oh, Y. Jiao, N. C. Tran, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing,” J. Lightwave Technol. 32(19), 3227–3233 (2014).
[Crossref]

F. Li, Z. Cao, J. Yu, X. Li, and L. Chen, “SSMI cancellation in direct-detection optical OFDM with novel half-cycled OFDM,” Opt. Express 21(23), 28543–28549 (2013).
[Crossref] [PubMed]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett. 23(15), 1061–1063 (2011).
[Crossref]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[Crossref]

Yu, S.

Zhang, B.

Zhuge, Q.

IEEE J. Sel. Areas Comm. (1)

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett. 23(15), 1061–1063 (2011).
[Crossref]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[Crossref]

J. Lightwave Technol. (6)

Nat. Photonics (1)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26Tbit/s linerate superchannel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Opt. Express (7)

Q. Yang, Z. He, Z. Yang, S. Yu, X. Yi, and W. Shieh, “Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing,” Opt. Express 20(3), 2379–2385 (2012).
[Crossref] [PubMed]

A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
[Crossref] [PubMed]

T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
[Crossref] [PubMed]

I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
[Crossref] [PubMed]

F. Li, Z. Cao, J. Yu, X. Li, and L. Chen, “SSMI cancellation in direct-detection optical OFDM with novel half-cycled OFDM,” Opt. Express 21(23), 28543–28549 (2013).
[Crossref] [PubMed]

S. A. Nezamalhosseini, L. R. Chen, Q. Zhuge, M. Malekiha, F. Marvasti, and D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21(13), 15237–15246 (2013).
[Crossref] [PubMed]

J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals,” Opt. Express 21(23), 28154–28166 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Other (6)

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-etection optical OFDM,” in Optical Fiber Communication Conference, 2009, paper PDPC3.
[Crossref]

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in Optical Fiber Communication Conference, 2008, paper OMU4.
[Crossref]

W. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication (ECOC 2010), paper Tu.4.A.2.
[Crossref]

P. Yang, H. Shi, and X. Chen, “A Novel Algorithm for SSBI Mitigation in a DD-SSB-OFDM Transmission System,” in ACP/IPOC 2013, AW3F.4.

X. Liu, S. Chandrasekhar, T. Lotz, P. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative- polarmodulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” in Optical Fiber Communication Conference and Exposition, 2012, paper PDP5B.3.

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in the proceedings of 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411, 19–21 December 2006, Dhaka, Bangladesh.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The principle diagram of SSBI cancellation receiver with the balanced detection (ICRBD) for the noised SSB-OOFDM signal. IL: interleaver; OC: optical coupler; PD: photodiode.
Fig. 2
Fig. 2 The influence of the isolation of IL, I = −20logρ, and the phase difference, φ, caused by the optical paths between the IL and OC on the magnitude of the received OFDM signal.
Fig. 3
Fig. 3 The influence of the coupling coefficient of the OC, c, on the magnitude of the received OFDM signal.
Fig. 4
Fig. 4 The influence of the phase difference φ caused by the length difference of the optical paths between the IL and OC on the phase of the OFDM signal at different isolations of IL, I = −20logρ.
Fig. 5
Fig. 5 The simulation link of the SSB-OOFDM signal with reduced GB and detected by the ICRBD. The insets are the spectra of (a) the transmitted RF-OFDM signal and (d) the received RF-OFDM by ICRBD, (b) the optical spectrum of CW laser diode and (c) the transmitted SSB-OOFDM signal at the resolution of 100MHz. CW LD: continuous wave laser diode; LO: local oscillator; MZM: Mach-Zehnder modulator; TOF: tunable optical filter; EDFA: Erbium doped fiber amplifier; IL: interleaver; OC: optical coupler; PD: photodiode.
Fig. 6
Fig. 6 (a) the passband profiles of the IL with rectangle and different-order Gaussian filters at 15GHz bandwidth, and (b) the EVM versus the bandwidth of the IL with the rectangle and Gaussian optical filters at different orders for the SSB-OOFDM signal with the GB of 5GHz, CSPR of 1.2dB, optical power of 4.4dBm and noise floor at −43dBm.
Fig. 7
Fig. 7 The EVM, received signal and noise powers versus the isolation of IL (I) for the SSB-OOFDM signal with the GB of 5GHz, CSPR of 1.2dB, optical power of 4.4dBm, and the noise floor at −43dBm detected by the ICRBD with the 25/50GHz IL.
Fig. 8
Fig. 8 The EVM, received signal and noise power versus the phase shift φ between the OOFDM signal and the optical carrier caused by the optical paths between the IL and OC at different isolations of IL. Inset: the RF spectra and constellations of the received OFDM signal with φ = 90 ° and different isolation of the IL.
Fig. 9
Fig. 9 The EVM, received signal and noise powers versus the polarization angle θ between the OOFDM signal and the optical carrier caused by the optical paths between the IL and OC with the phase shift φ of 0° and 90°. Inset: the RF spectra and constellations of the received OFDM signal with different phase shift φ and polarization angle θ.
Fig. 10
Fig. 10 The EVM, the received signal and noise powers versus the coupling coefficient (c) of the OC at the phase difference of (a) φ = 0° and (b) φ = 90° with the polarization angle of θ = 0°, 30°, 60° between the OOFDM signal and the optical carrier, respectively.
Fig. 11
Fig. 11 The EVM, the received signal and noise powers versus the polarization angle ϑ between the two recombined SSB-OOFDM signals caused by the optical paths between the OC and BPD.
Fig. 12
Fig. 12 The EVM, the received signal and noise power versus the time delay caused by the optical paths between the OC and BPD (Δτ1), and the electrical paths between the BPD and the subtractor (Δτ2) for the cases without and with 90° phase shift between the OOFDM signal and the optical carrier caused by the optical paths between the IL and OC, namely, φ = 0° and 90°, respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E( t )= θ ^ ( t ){ E C e j ω o t + E S i= [ n=N/2 N/2 1 c ni Π( ti T s ) e j( ω o + ω RF + ω n )t ] +w( t ) } E C ( t )+ E S s( t )+w( t )
H 1 ( ω )={ H 1 ( ω 0 )1 inpassband H 1 ( ω o ω RF ) ρ 1 ~0 instopband ,
H 2 ( ω )={ H 2 ( ω 0 ) ρ 2 ~0 instopband H 2 ( ω o ω RF )1 inpassband .
E S ( t )= F 1 { H 2 ( ω )F{ E( t ) } } H 2 ( ω o + ω RF ){ E S i= [ n=N/2 N/2 1 c ni Π( ti T s ) e j ω n t ] θ ^ ( t )+ w S ( t ) } e j( ω o + ω RF )t + H 2 ( ω o )[ E C θ ^ ( t )+ w C ( t ) ] e j ω o t =[ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j( ω o + ω RF )t + ρ 2 [ E C θ ^ ( t )+ w C ( t ) ] e j ω o t [ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j( ω o + ω RF )t
E C ( t )= F 1 { H 1 ( ω )F{ E( t ) } } H 1 ( ω o + ω RF ){ E S i= [ n=N/2 N/2 1 c ni Π( ti T s ) e j ω n t ] θ ^ ( t )+ w S ( t ) } e j( ω o + ω RF )t + H 1 ( ω o )[ E C θ ^ ( t )+ w C ( t ) ] e j ω o t = ρ 1 [ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j( ω o + ω RF )t +[ E C θ ^ ( t )+ w C ( t ) ] e j ω o t [ E C θ ^ ( t )+ w C ( t ) ] e j ω o t
E ( t )=( E S ( t ) E C ( t ) )=( [ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j( ω o + ω RF )t + ρ 2 [ E C θ ^ ( t )+ w C ( t ) ] e j ω o t ρ 1 [ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j( ω o + ω RF )t +[ E C θ ^ ( t )+ w C ( t ) ] e j ω o t ) =( 1 ρ 2 ρ 1 1 )( [ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j ω RF t [ E C θ ^ ( t )+ w C ( t ) ] ) e j ω o t
T L =( θ ^ 2 0 0 θ ^ 1 e jφ )
T OC = α x ( 1c jp c jp c 1c )
E ( t )=( E 2 ( t ) E 1 ( t ) )= T OC T L E ( t ) α x ( θ ^ 2 1c [ E S s( t )+ w S ( t ) ] e j ω RF t + θ ^ 1 jp e jφ c [ E C θ ^ ( t )+ w C ( t ) ] θ ^ 2 jp c [ E S s( t )+ w S ( t ) ] e j ω RF t + θ ^ 1 e jφ 1c [ E C θ ^ ( t )+ w C ( t ) ] ) e j ω o t
( E 2in ( t ) E 1in ( t ) )=( E 2 ( t ) ϑ ^ 1 E 1 ( tΔ τ 1 ) ϑ ^ 2 )
( I 2 ( t ) I 1 ( t ) )=μ( | E 2in ( t ) | 2 | E 1in ( t ) | 2 )+( w D2 ( t ) w D1 ( t ) )=μ( | E 2 ( t ) | 2 | E 1 ( tΔ τ 1 ) | 2 )+( w D2 ( t ) w D1 ( t ) )
I( t )= I 2 ( t ) I 1 ( tΔ τ 2 )=μ | E 2 ( t ) | 2 + w D2 ( t )μ | E 1 ( tΔ τ 1 Δ τ 2 ) | 2 w D1 ( tΔ τ 2 ) =μ α x 2 [ 1c+ ρ 1 2 c2p θ ^ 1 θ ^ 2 ρ 1 ( 1c )c sinφ ] | E S s( t ) θ ^ ( t )+ w S ( t ) | 2 μ α x 2 [ c+ ρ 1 2 ρ 1 2 c+2p θ ^ 1 θ ^ 2 ρ 1 ( 1c )c sinφ ] | E S s( tΔ τ 1 Δ τ 2 ) θ ^ ( t )+ w S ( tΔ τ 1 Δ τ 2 ) | 2 +μ α x 2 [ ρ 2 2 ρ 2 2 c+c2p θ ^ 1 θ ^ 2 ρ 2 ( 1c )c sinφ ] | E C θ ^ ( t )+ w C ( t ) | 2 μ α x 2 [ 1c+ ρ 2 2 c+2p θ ^ 1 θ ^ 2 ρ 2 ( 1c )c sinφ ] | E C θ ^ ( tΔ τ 1 Δ τ 2 )+ w C ( tΔ τ 1 Δ τ 2 ) | 2 +2μ α x 2 Re{ [ ρ 2 ( 1c )+ ρ 1 c+jp θ ^ 1 θ ^ 2 ( 1c )c ( ρ 1 ρ 2 e jφ e jφ ) ][ E C θ ^ ( t )+ w C ( t ) ] [ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j ω RF t } 2μ α x 2 Re{ [ ρ 2 c+ ρ 1 ( 1c )+jp θ ^ 1 θ ^ 2 ( 1c )c ( e jφ ρ 1 ρ 2 e jφ ) ] [ E C θ ^ ( tΔ τ 1 Δ τ 2 )+ w C ( tΔ τ 1 Δ τ 2 ) ] [ E S s( tΔ τ 1 Δ τ 2 ) θ ^ ( tΔ τ 1 Δ τ 2 )+ w S ( tΔ τ 1 Δ τ 2 ) ] e j ω RF ( tΔ τ 1 Δ τ 2 ) } + w D2 ( t ) w D1 ( tΔ τ 2 )
I( t )=2pμ α x 2 Im{ [ E C θ ^ ( t )+ w C ( t ) ][ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j ω RF t } =2pμ α x 2 Im{ [ E C E S s( t )+ E C θ ^ ( t ) w S ( t )+ E S s( t ) θ ^ ( t ) w C ( t )+ w C ( t ) w S ( t ) ] e j ω RF t }
I( t )=μ α x 2 [ ( 12c )( 1 ρ 2 )4pρ ( 1c )c cosθsinφ ] | E S s( t ) θ ^ ( t )+ w S ( t ) | 2 +μ α x 2 [ ( 12c )( ρ 2 1 )4pρ ( 1c )c cosθsinφ ] | E C θ ^ ( t )+ w C ( t ) | 2 +4pμ α x 2 ( 1c )c cosθRe{ j( ρ 2 e jφ e jφ )[ E C θ ^ ( t )+ w C ( t ) ][ E S s( t ) θ ^ ( t )+ w S ( t ) ] e j ω RF t } + w D2 ( t ) w D1 ( tΔ τ 2 ) =4pμ α x 2 ( 1c )c 1+ ρ 4 2 ρ 2 cos2φ cosθRe{ E C E S s( t ) e j[ ω RF t tan 1 ( 1+ ρ 2 1 ρ 2 tanφ )+ π 2 ] } S R ( t ) +μ α x 2 [ ( 12c )( 1 ρ 2 )4pρ ( 1c )c cosθsinφ ] | E S s( t ) θ ^ ( t )+ w S ( t ) | 2 +μ α x 2 [ ( 12c )( ρ 2 1 )4pρ ( 1c )c cosθsinφ ] | E C θ ^ ( t )+ w C ( t ) | 2 +4pμ α x 2 ( 1c )c 1+ ρ 4 2 ρ 2 cos2φ cosθ Re{ [ E C θ ^ ( t ) w S ( t )+ E S θ ^ ( t ) w C ( t )s( t )+ w S ( t ) w C ( t ) ] e j[ ω RF t tan 1 ( 1+ ρ 2 1 ρ 2 tanφ )+ π 2 ] } + w D2 ( t ) w D1 ( tΔ τ 2 ) } N R ( t ) = S R ( t )+ N R ( t )
S R ( t )=4pμ α x 2 ( 1c )c 1+ ρ 4 2 ρ 2 cos2φ cosθRe{ E C E S s( t ) e j[ ω RF t tan 1 ( 1+ ρ 2 1 ρ 2 tanφ )+ π 2 ] },
N R ( t )μ α x 2 [ ( 12c )( 1 ρ 2 )4pρ ( 1c )c sinφcosθ ] | E S s( t ) | 2 +μ α x 2 [ ( 12c )( ρ 2 1 )4pρ ( 1c )c sinφcosθ ] | E C | 2

Metrics