Abstract

We demonstrate the use of distributed Raman amplification (DRA) in a dispersion decreasing fiber (DDF) for the efficiency enhancement of adiabatic soliton compression of a dual frequency beat signal. We compress a 40 GHz beat signal generated from a LiNbO3 modulator at a driving RF frequency of 20 GHz into ~ 2.2 ps soliton pulses using DRA in a 20 km DDF. The generation of high quality of soliton pulses from the 40 GHz sinusoidal beat signal is readily achieved with a significantly enhanced efficiency using DDF based DRA, compared to the case of using a DDF without DRA or a DSF with DRA.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression

Toshihiko Hirooka, Shinpei Ono, Ken-ichi Hagiuda, and Masataka Nakazawa
Opt. Lett. 30(4) 364-366 (2005)

References

  • View by:
  • |
  • |
  • |

  1. E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
    [Crossref]
  2. A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
    [Crossref]
  3. A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
    [Crossref]
  4. E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output,” IEEE Photon. Technol. Lett. 7, 114–116 (1995).
    [Crossref]
  5. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (2002).
    [Crossref]
  6. K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).
  7. I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).
  8. T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration tunable 10 GHz, 1.3 ps pulse source using dispersion decreasing fiber based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
    [Crossref]
  9. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
    [Crossref]
  10. N. G. R. Broderick, D. J. Richardson, and L. Dong, “Distributed dispersion measurements and control within continuously varying dispersion tapered fibers,” IEEE Photon. Technol. Lett. 9, 1511–1513 (1997).
    [Crossref]
  11. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995), Chap. 2.

2004 (2)

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration tunable 10 GHz, 1.3 ps pulse source using dispersion decreasing fiber based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[Crossref]

2002 (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (2002).
[Crossref]

1997 (1)

N. G. R. Broderick, D. J. Richardson, and L. Dong, “Distributed dispersion measurements and control within continuously varying dispersion tapered fibers,” IEEE Photon. Technol. Lett. 9, 1511–1513 (1997).
[Crossref]

1996 (1)

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

1995 (3)

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output,” IEEE Photon. Technol. Lett. 7, 114–116 (1995).
[Crossref]

1994 (1)

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995), Chap. 2.

Akiba, S.

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

Broderick, N. G. R.

N. G. R. Broderick, D. J. Richardson, and L. Dong, “Distributed dispersion measurements and control within continuously varying dispersion tapered fibers,” IEEE Photon. Technol. Lett. 9, 1511–1513 (1997).
[Crossref]

Chamberlin, R. P.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

Chernikov, S. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (2002).
[Crossref]

Chinn, S. R.

E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output,” IEEE Photon. Technol. Lett. 7, 114–116 (1995).
[Crossref]

Ciaramella, E.

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

Contestabile, G.

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

D’Errico, A,

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

Dianov, E. M.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (2002).
[Crossref]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
[Crossref]

Dong, L.

N. G. R. Broderick, D. J. Richardson, and L. Dong, “Distributed dispersion measurements and control within continuously varying dispersion tapered fibers,” IEEE Photon. Technol. Lett. 9, 1511–1513 (1997).
[Crossref]

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

Edagawa, N.

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

Ellis, A. D.

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

Igarashi, K.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).

Kogure, T.

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration tunable 10 GHz, 1.3 ps pulse source using dispersion decreasing fiber based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[Crossref]

Lee, J. H.

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration tunable 10 GHz, 1.3 ps pulse source using dispersion decreasing fiber based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[Crossref]

Loiacono, C.

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

Mamyshev, P. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (2002).
[Crossref]

Matsushita, S.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).

Morita, I.

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

Namiki, S.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).

Payne, D. N.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
[Crossref]

Pender, W. A.

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

Presi, M.

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

Richardson, D. J.

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration tunable 10 GHz, 1.3 ps pulse source using dispersion decreasing fiber based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[Crossref]

N. G. R. Broderick, D. J. Richardson, and L. Dong, “Distributed dispersion measurements and control within continuously varying dispersion tapered fibers,” IEEE Photon. Technol. Lett. 9, 1511–1513 (1997).
[Crossref]

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
[Crossref]

Shipulin, A. V.

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
[Crossref]

Suzuki, M.

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

Swanson, E. A.

E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output,” IEEE Photon. Technol. Lett. 7, 114–116 (1995).
[Crossref]

Takasaka, S.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).

Tobioka, H.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).

Widdowson, T.

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

Yamamoto, S.

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

Electron. Lett. (2)

A. D. Ellis, W. A. Pender, T. Widdowson, D. J. Richardson, R. P. Chamberlin, and L. Dong, “All-optical modulation of 40-GHz beat frequency conversion soliton source,” Electron. Lett. 31, 1362–1364, 1995.
[Crossref]

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (5)

N. G. R. Broderick, D. J. Richardson, and L. Dong, “Distributed dispersion measurements and control within continuously varying dispersion tapered fibers,” IEEE Photon. Technol. Lett. 9, 1511–1513 (1997).
[Crossref]

E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output,” IEEE Photon. Technol. Lett. 7, 114–116 (1995).
[Crossref]

E. Ciaramella, G. Contestabile, A, D’Errico, C. Loiacono, and M. Presi, “High-power widely tunable 40GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects,” IEEE Photon. Technol. Lett. 16, 753–755 (2004).
[Crossref]

A. V. Shipulin, E. M. Dianov, D. J. Richardson, and D. N. Payne, “40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit,” IEEE Photon. Technol. Lett. 6, 1380 – 1382 (1994).
[Crossref]

T. Kogure, J. H. Lee, and D. J. Richardson, “Wavelength and duration tunable 10 GHz, 1.3 ps pulse source using dispersion decreasing fiber based distributed Raman amplification,” IEEE Photon. Technol. Lett. 16, 1167–1169 (2004).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995), Chap. 2.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita, and S. Namiki, “Duration-Tunable 100-GHz Sub-Picosecond Soliton Train Generation Through Adiabatic Raman Amplification in Conjunction with Soliton Reshaping,” in Proc. Optical Fiber Communications Conference (OFC 2003), Paper TuB6 (2003).

I. Morita, N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Adiabatic soliton pulse compression by dispersion decreasing fiber with Raman amplification,” in Proc. Opto-Electronics & Communications Conference, 17P-16 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experimental setup. (b) Dispersion profile of the dispersion decreasing fiber (DDF).
Fig. 2.
Fig. 2. Numerically calculated results after the DDF with DRA. (a) Normalized output soliton pulses at a repetition rate of 40 GHz. (b) The corresponding optical spectrum of the soliton train.
Fig. 3.
Fig. 3. Measured autocorrelation traces of the output compressed pulses after the DDF for both the case with and without distributed Raman amplification.
Fig. 4.
Fig. 4. (a) Measured autocorrelation trace of a single pulse compressed with distributed Raman amplification in the DDF. (b) The corresponding optical spectrum of the pulse.
Fig. 5.
Fig. 5. Measured autocorrelation traces of the compressed pulses after a 20 km long DSF with a GVD of 3.8 ps/nm-km for both the case with and without distributed Raman amplification.
Fig. 6.
Fig. 6. (a) Measured autocorrelation trace of a single pulse compressed with distributed Raman amplification in the DSF. (b) The corresponding optical spectrum of the pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dI s dz = g R I p I s α s I s ,
dI p dz = λ s λ p g R I p I s + α p I p ,
I s z = ρ s ( z ) · I s
A z + β 1 A t + i 2 β 2 2 A t 2 1 6 β 3 3 A t 2 + ρ s ( z ) 2 A = A 2 A

Metrics