Abstract
© 2016 Optical Society of Korea
PDF Article© 2016 Optical Society of Korea
PDF Article
R. Borghi, “Uniform asymptotics of paraxial boundary diffraction wave,” J. Opt. Soc. Am. A. 32, 685-696 (2015).
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
W. Shouhua, Y. Hongbin, and C. F. Siong, “A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation,” IEEE Sensors J. 10, 1869-1874 (2010).
[Crossref]
Y. Z. Umul, “Uniform boundary diffraction wave theory of Rubinowicz,” J. Opt. Soc. Am. A. 27, 1613-1619 (2010).
[Crossref]
U. Yalҫin, “Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces,” Prog. Electromag. Res. 7, 29-39 (2009).
[Crossref]
O. Ferhanoglu, H. R. Seren, S. Lüttjohann, and H. Urey, “Lamellar grating optimization for miniaturized fourier transform spectrometers,” Opt. Express 17, 21289-21301 (2009).
[Crossref]
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517-2523 (2006).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
R. Harig, “Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution,” Appl. Opt. 43, 4603-4610 (2004).
[Crossref]
J. H. Hannay, “Fresnel diffraction as an aperture edge integral,” J. Mod. Opt. 47, 121-124 (2000).
[Crossref]
S. Anokhov, “On problem of the rigorous diffraction quantitative description,” Semicon. Phys. Quant. Elect. Optoelec. 2, 66-69 (1999).
S. Ganci, “Boundary diffraction wave theory of Rubinowicz for rectilinear apertures,” Eur. J. Phys 18. 229-236 (1997).
[Crossref]
S. Wang, “On principles of diffraction,” Optik, 100, 107-108 (1995).
P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23, 267-312 (1960).
[Crossref]
J. Strong and G. A. Vanasse, “Lamellar grating far-infrared interferometer,” J. Opt. Soc. Am. 50, 113-118 (1960).
[Crossref]
P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39, 970-979 (1949).
[Crossref]
A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen,” Ann. Physik, 53, 257-278 (1917).
G. A. Maggi, “Sulla propagazione libera e perturbata delle onde luminose in mezzo isotropo,” Ann. di Math. IIa 16, 21-48 (1888).
H. F. Talbot, “Facts relating to optical science No. IV,” Philos. Mag. Ser. III, 9, No. 56 (1836).
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
S. Anokhov, “On problem of the rigorous diffraction quantitative description,” Semicon. Phys. Quant. Elect. Optoelec. 2, 66-69 (1999).
C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517-2523 (2006).
[Crossref]
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
R. Borghi, “Uniform asymptotics of paraxial boundary diffraction wave,” J. Opt. Soc. Am. A. 32, 685-696 (2015).
M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, 2nd ed., (John Wiley & Sons, Inc., New York, NY, USA, 2007).
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39, 970-979 (1949).
[Crossref]
O. Ferhanoglu, H. R. Seren, S. Lüttjohann, and H. Urey, “Lamellar grating optimization for miniaturized fourier transform spectrometers,” Opt. Express 17, 21289-21301 (2009).
[Crossref]
S. Ganci, “Boundary diffraction wave theory of Rubinowicz for rectilinear apertures,” Eur. J. Phys 18. 229-236 (1997).
[Crossref]
J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, Englewood, CO, USA, 2005).
P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, 2nd ed., (John Wiley & Sons, Inc., New York, NY, USA, 2007).
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
J. H. Hannay, “Fresnel diffraction as an aperture edge integral,” J. Mod. Opt. 47, 121-124 (2000).
[Crossref]
R. Harig, “Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution,” Appl. Opt. 43, 4603-4610 (2004).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
W. Shouhua, Y. Hongbin, and C. F. Siong, “A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation,” IEEE Sensors J. 10, 1869-1874 (2010).
[Crossref]
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23, 267-312 (1960).
[Crossref]
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
O. Ferhanoglu, H. R. Seren, S. Lüttjohann, and H. Urey, “Lamellar grating optimization for miniaturized fourier transform spectrometers,” Opt. Express 17, 21289-21301 (2009).
[Crossref]
G. A. Maggi, “Sulla propagazione libera e perturbata delle onde luminose in mezzo isotropo,” Ann. di Math. IIa 16, 21-48 (1888).
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen,” Ann. Physik, 53, 257-278 (1917).
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
O. Ferhanoglu, H. R. Seren, S. Lüttjohann, and H. Urey, “Lamellar grating optimization for miniaturized fourier transform spectrometers,” Opt. Express 17, 21289-21301 (2009).
[Crossref]
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
W. Shouhua, Y. Hongbin, and C. F. Siong, “A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation,” IEEE Sensors J. 10, 1869-1874 (2010).
[Crossref]
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
W. Shouhua, Y. Hongbin, and C. F. Siong, “A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation,” IEEE Sensors J. 10, 1869-1874 (2010).
[Crossref]
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
J. Strong and G. A. Vanasse, “Lamellar grating far-infrared interferometer,” J. Opt. Soc. Am. 50, 113-118 (1960).
[Crossref]
H. F. Talbot, “Facts relating to optical science No. IV,” Philos. Mag. Ser. III, 9, No. 56 (1836).
Y. Z. Umul, “Uniform boundary diffraction wave theory of Rubinowicz,” J. Opt. Soc. Am. A. 27, 1613-1619 (2010).
[Crossref]
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
O. Ferhanoglu, H. R. Seren, S. Lüttjohann, and H. Urey, “Lamellar grating optimization for miniaturized fourier transform spectrometers,” Opt. Express 17, 21289-21301 (2009).
[Crossref]
C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517-2523 (2006).
[Crossref]
J. Strong and G. A. Vanasse, “Lamellar grating far-infrared interferometer,” J. Opt. Soc. Am. 50, 113-118 (1960).
[Crossref]
S. Wang, “On principles of diffraction,” Optik, 100, 107-108 (1995).
M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517-2523 (2006).
[Crossref]
U. Yalҫin, “Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces,” Prog. Electromag. Res. 7, 29-39 (2009).
[Crossref]
G. A. Maggi, “Sulla propagazione libera e perturbata delle onde luminose in mezzo isotropo,” Ann. di Math. IIa 16, 21-48 (1888).
A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen,” Ann. Physik, 53, 257-278 (1917).
N. P. Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53, 7267-7272 (2014).
[Crossref]
R. Harig, “Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution,” Appl. Opt. 43, 4603-4610 (2004).
[Crossref]
S. Ganci, “Boundary diffraction wave theory of Rubinowicz for rectilinear apertures,” Eur. J. Phys 18. 229-236 (1997).
[Crossref]
W. Shouhua, Y. Hongbin, and C. F. Siong, “A miniaturized lamellar grating based Fourier transform spectrometer with electrostatic actuation,” IEEE Sensors J. 10, 1869-1874 (2010).
[Crossref]
H. R. Seren, S. Holmstrom, N. P. Ayerden, J. Sharma, and H. Urey, “Lamellar-grating-based MEMS fourier transform spectrometer,” J. Microelectrochem. Sys. 21, 331-339 (2012).
[Crossref]
C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16, 2517-2523 (2006).
[Crossref]
J. H. Hannay, “Fresnel diffraction as an aperture edge integral,” J. Mod. Opt. 47, 121-124 (2000).
[Crossref]
J. Strong and G. A. Vanasse, “Lamellar grating far-infrared interferometer,” J. Opt. Soc. Am. 50, 113-118 (1960).
[Crossref]
P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39, 970-979 (1949).
[Crossref]
J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116-130 (1962).
[Crossref]
Y. Z. Umul, “Uniform boundary diffraction wave theory of Rubinowicz,” J. Opt. Soc. Am. A. 27, 1613-1619 (2010).
[Crossref]
R. Borghi, “Uniform asymptotics of paraxial boundary diffraction wave,” J. Opt. Soc. Am. A. 32, 685-696 (2015).
Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” Micromech. Microeng. 18, 055016 (2008).
[Crossref]
O. Ferhanoglu, H. R. Seren, S. Lüttjohann, and H. Urey, “Lamellar grating optimization for miniaturized fourier transform spectrometers,” Opt. Express 17, 21289-21301 (2009).
[Crossref]
R. Kumar, S. K. Kaura, A. K. Sharma, D. P. Chhachhia, and A. K. Aggarwal, “Knife-edge diffraction as an interference phenomenon: an experimental reality”, Opt. Laser Tech. 39, 256-261(2007).
[Crossref]
O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. D. Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
[Crossref]
S. Wang, “On principles of diffraction,” Optik, 100, 107-108 (1995).
H. F. Talbot, “Facts relating to optical science No. IV,” Philos. Mag. Ser. III, 9, No. 56 (1836).
U. Yalҫin, “Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces,” Prog. Electromag. Res. 7, 29-39 (2009).
[Crossref]
P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23, 267-312 (1960).
[Crossref]
S. Anokhov, “On problem of the rigorous diffraction quantitative description,” Semicon. Phys. Quant. Elect. Optoelec. 2, 66-69 (1999).
Refer the following web pages: https://www.technikon.com/projects/former/memfis, http://home.ku.edu.tr/~mems/memfisproject.html, http://cordis.europa.eu/project/rcn/86631_en.html.
P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, 2nd ed., (John Wiley & Sons, Inc., New York, NY, USA, 2007).
J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, Englewood, CO, USA, 2005).
M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.