Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Correlation and polarization singularities of a radially polarized Gaussian Schell-model vortex beam propagating in oceanic turbulence

Not Accessible

Your library or personal account may give you access

Abstract

The correlation and polarization singularities as the important parameters of a radially polarized Gaussian Schell-model vortex beam propagating in oceanic turbulence have been investigated in detail. On the one hand, the correlation singularity of the beam will first split, and then generate new correlation singularities, and finally vanish in pairs. The longer the propagating distance, the larger the rate of dissipation of mean-square temperature, and the lower initial correlation lengths reduce the stability of correlation singularities. On the other hand, polarization singularities also split during transmission. The different initial correlation lengths cause the uneven distribution of polarization singularities, and the high order topological charge leads to the generation of new polarization singularities at short distances. Our numerical findings may be of great significance for detection and imaging of the oceanic optical telecommunication links.

© 2024 Optica Publishing Group

Full Article  |  PDF Article

Data availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.