Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-loss tunable beam collimator and expander assembly with no moving parts using an engineered diffuser and varifocal lenses

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a novel design for a tunable beam collimator. A variable collimator assists in achieving an adaptive size of an output collimated beam. Alternatively, it can also provide an adjustable output beam divergence angle for a noncollimated beam output. Tunable collimators are highly desirable for various applications in testing, engineering, and measurements. Such devices are also useful in providing tunable illumination of samples or targets in microscopes and emulating different target distances for characterizing the performance of camera systems in laboratory settings. The proposed collimator has two distinct advantages: it is light-efficient compared with pinhole-based collimator designs, and it delivers a large range of output beam sizes without involving the mechanical motion of bulk components. These attributes are achieved via the use of an engineered diffuser (in the place of a pinhole) and a pair of large aperture tunable focus lenses, which deliver a tunable magnification to the output collimated beam. In laboratory experiments, we achieve an optical transmission efficiency of 90% for the proposed tunable collimator.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
How good are collimated Gaussian beams produced with engineered diffusers?

Minjae Kim, Arjent Imeri, Andrew Krajecki, and Syed Azer Reza
Appl. Opt. 63(12) 3304-3316 (2024)

Generation of cross-spectrally pure electromagnetic fields using a pair of moving diffusers

Rajneesh Joshi and Bhaskar Kanseri
J. Opt. Soc. Am. A 40(2) 204-210 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.