Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deriving instrumental point spread functions from partially occulted images

Abstract

The point spread function (PSF) of an imaging system describes the response of the system to a point source. Accurately determining the PSF enables one to correct for the combined effects of focusing and scattering within the imaging system and, thereby, enhance the spatial resolution and dynamic contrast of the resulting images. We present a semi-empirical semi-blind methodology to derive a PSF from partially occulted images. We partition the two-dimensional PSF into multiple segments, set up a multilinear system of equations, and directly fit the system of equations to determine the PSF weight in each segment. The algorithm is guaranteed to converge toward the correct instrumental PSF for a large class of occultations, does not require a predefined functional form of the PSF, and can be applied to a large variety of partially occulted images, such as within laboratory settings, regular calibrations within a production line or in the field, astronomical images of distant clusters of stars, or partial solar eclipse images. We show that the central weight of the PSF, which gives the percentage of photons that are not scattered by the instrument, is accurate to better than 1.2%. The mean absolute percentage error between the reconstructed and true PSF is usually between 0.5 and 5% for the entire PSF, between 0.5 and 5% for the PSF core, and between 0.5 and 3% for the PSF tail.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Off-axis point spread function reconstruction for single conjugate adaptive optics

Roland Wagner, Jenny Niebsch, and Ronny Ramlau
J. Opt. Soc. Am. A 40(7) 1382-1391 (2023)

Satellite image restoration in the context of a spatially varying point spread function

Nasreddine Hajlaoui, Caroline Chaux, Guillaume Perrin, Frédéric Falzon, and Amel Benazza-Benyahia
J. Opt. Soc. Am. A 27(6) 1473-1481 (2010)

Measurement of the point-spread function of a noisy imaging system

Christopher D. Claxton and Richard C. Staunton
J. Opt. Soc. Am. A 25(1) 159-170 (2008)

Data availability

A Python implementation of this algorithm and a library that creates the test cases presented here are available in [18].

18. F. Hofmeister, “Deriving PSFs from partially occulted images,” GitHub, 2022, https://github.com/stefanhofmeister/Deriving-PSFs-from-partially-occulted-images.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.