Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Edge feature extraction-based dual CNN for LDCT denoising

Not Accessible

Your library or personal account may give you access

Abstract

In low-dose computed tomography (LDCT) denoising tasks, it is often difficult to balance edge/detail preservation and noise/artifact reduction. To solve this problem, we propose a dual convolutional neural network (CNN) based on edge feature extraction (Ed-DuCNN) for LDCT. Ed-DuCNN consists of two branches. One branch is the edge feature extraction subnet (Edge_Net) that can fully extract the edge details in the image. The other branch is the feature fusion subnet (Fusion_Net) that introduces an attention mechanism to fuse edge features and noisy image features. Specifically, first, shallow edge-specific detail features are extracted by trainable Sobel convolutional blocks and then are integrated into Edge_Net together with the LDCT images to obtain deep edge detail features. Finally, the input image, shallow edge detail, and deep edge detail features are fused in Fusion_Net to generate the final denoised image. The experimental results show that the proposed Ed-DuCNN can achieve competitive performance in terms of quantitative metrics and visual perceptual quality compared with that of state-of-the-art methods.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising

Han Liu, Peixi Liao, Hu Chen, and Yi Zhang
Biomed. Opt. Express 13(11) 5775-5793 (2022)

Multiscale feature pyramid network based on activity level weight selection for infrared and visible image fusion

Rui Xu, Gang Liu, Yuning Xie, Bavirisetti Durga Prasad, Yao Qian, and Mengliang Xing
J. Opt. Soc. Am. A 39(12) 2193-2204 (2022)

Data availability

Data underlying the results presented in this paper are available in the AAPM Dataset [28].

28. C. McCollough, “TU-FG-207A-04: overview of the low dose CT grand challenge,” Med. Phys. 43, 3759–3760 (2016). [CrossRef]  

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.