Abstract

In this work, we report experiments and a theoretical scheme of photon transport in the frequency domain of rigid turbid media. We have employed spectral multi-speckle intensity correlations to estimate optical properties as the transport mean free path and the absorption length of turbid systems. We propose a scheme based on the photon diffusion model using an effective path-length distribution in the backscattering configuration and take explicitly into account the particles scattering anisotropy parameter ${g}$. By studying rigid Teflon slabs and polymer matrices doped with polystyrene particles of different degrees of scattering anisotropy, we find that the proposed model adequately describes our experimental results. Our hypothesis for the diffuse transport of backscattered photons in the weak multiple scattering regime is further validated using a numerical simulation scheme of speckle dynamics, based on the Copula method.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Time-resolved study of optical properties and microscopic dynamics during the drying of TiO2 films by spectral diffusing wave spectroscopy

Angel A. Duran-Ledezma, Damián Jacinto-Méndez, and Luis F. Rojas-Ochoa
Appl. Opt. 57(2) 208-216 (2018)

Depolarization of backscattered linearly polarized light

Luis Fernando Rojas-Ochoa, David Lacoste, Ralf Lenke, Peter Schurtenberger, and Frank Scheffold
J. Opt. Soc. Am. A 21(9) 1799-1804 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription