Abstract

The proposed approach exploits a priori known qualitative inclusion and photometric relationships between image regions, represented by oriented graphs. Our work assumes a sequential image segmentation procedure where regions are progressively segmented and recognized by associating them with corresponding nodes in graphs related to the prior knowledge. The main contribution concerns the parameterization of the k-means clustering algorithm, to be used during the segmentation procedure, and the graph-matching-based identification of resulting clusters, corresponding to regions declared in graphs. The parameterization of k-means is based on known relationships as well as on regions that have been segmented and recognized at previous steps. Parameters are the region of interest within which k-means clustering is constrained, the number of clusters, and seeding constraints. Photometric relationships built from resulting clusters are matched with a priori known relationships to identify each cluster, this being formulated as an exact graph-matching problem. The potential of this approach is studied in four use cases involving real gray-scale and color images with dedicated sequential analysis procedures. Processing results are compared with those obtained without the proposed parameterization of k-means, as well as with some other clustering approaches. Results show the relevance of our approach, in particular in terms of segmentation accuracy, computation time, and seeding reliability.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of a priori knowledge in image reconstruction

L. M. Cheng, A. S. Ho, and R. E. Burge
J. Opt. Soc. Am. A 1(4) 386-391 (1984)

Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events

Bahram Javidi, Seokwon Yeom, Inkyu Moon, and Mehdi Daneshpanah
Opt. Express 14(9) 3806-3829 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription