Abstract

Optical diffraction tomography (ODT) is a three-dimensional (3D) quantitative phase imaging technique, which enables the reconstruction of the 3D refractive index (RI) distribution of a transparent sample. Due to its fast, non-invasive, and quantitative imaging capability, ODT has emerged as a powerful tool for various applications. However, the spatial resolution of ODT has only been quantified along the lateral and axial directions for limited conditions; it has not been investigated for arbitrary-oblique directions. In this paper, we systematically quantify the 3D spatial resolution of ODT by exploiting the spatial bandwidth of the reconstructed scattering potential. The 3D spatial resolution is calculated for various types of systems, including the illumination-scanning, sample-rotation, and hybrid scanning-rotation methods. In particular, using the calculated 3D spatial resolution, we provide the spatial resolution as well as the arbitrary sliced angle. Furthermore, to validate the present method, the point spread function of an ODT system is experimentally obtained using the deconvolution of a 3D RI distribution of a microsphere and is compared with the calculated resolution.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence

Tao Yu, Hecong Liu, and Weiwei Cai
Opt. Express 25(20) 24093-24108 (2017)

Three-dimensional imaging of single isolated cell nuclei using optical projection tomography

Mark Fauver, Eric J. Seibel, J. Richard Rahn, Michael G. Meyer, Florence W. Patten, Thomas Neumann, and Alan C. Nelson
Opt. Express 13(11) 4210-4223 (2005)

Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells

José A. Rodrigo, Juan M. Soto, and Tatiana Alieva
Biomed. Opt. Express 8(12) 5507-5517 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription