Abstract

In this paper a set of radial and azimuthal phase functions are reviewed that have a null Strehl ratio, which is equivalent to generating a central extinction in the image plane of an optical system. The study is conducted in the framework of Fraunhofer scalar diffraction, and is oriented toward practical cases where optical nulls or singularities are produced by deformable mirrors or phase plates. The identified solutions reveal unexpected links with the zeros of type-J Bessel functions of integer order. They include linear azimuthal phase ramps giving birth to an optical vortex, azimuthally modulated phase functions, and circular phase gratings (CPGs). It is found in particular that the CPG radiometric efficiency could be significantly improved by the null Strehl ratio condition. Simple design rules for rescaling and combining the different phase functions are also defined. Finally, the described analytical solutions could also serve as starting points for an automated searching software tool.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of diffractive lenses that generate optical nulls without phase singularities

Rajesh Menon, Paul Rogge, and Hsin-Yu Tsai
J. Opt. Soc. Am. A 26(2) 297-304 (2009)

Strehl ratio for optical systems with ultrafast illumination

Weichuan Gao and Tom Milster
Opt. Express 26(14) 18028-18042 (2018)

Evaluation of highly corrected optics by measurement of the Strehl ratio

Norman Bobroff and Alan E. Rosenbluth
Appl. Opt. 31(10) 1523-1536 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription