Abstract

Kramers–Kronig relations for semiconducting particles are established for a set of functions related to the scattering amplitude function in the forward direction. It is shown that some of these relationships allow subtractive Kramers–Kronig relations to be formed that are independent of any material constants. As a consequence, the refractive-index spectra can be determined without requiring the value of the index to be known at any frequency a priori. The approach is to use the optical theorem to establish the spectrum of one part of a complex function from the measured data. Its Kramers–Kronig counterpart is then computed, thereby establishing the values of two functions at each frequency. Since the dependence of each of the functions on the refractive index is known from the Mie theory, the real and imaginary parts of the index are then determined by simultaneous solution of the two functions at each frequency. Calculations are presented based on simulated data for combustion-generated hydrocarbon soot particles, and the influence of various types of experimental error on data inversion is investigated.

© 1986 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of subtractive Kramers-Kronig analysis and maximum entropy model in resolving phase from finite spectral range reflectance data

Evgeny Gornov, Erik M. Vartiainen, and Kai-Erik Peiponen
Appl. Opt. 45(25) 6519-6524 (2006)

Multiply subtractive Kramers–Kronig analysis of optical data

Kent F. Palmer, Michael Z. Williams, and Ben A. Budde
Appl. Opt. 37(13) 2660-2673 (1998)

Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing

Fabio Ferri, Alessandra Bassini, and Enrico Paganini
Appl. Opt. 34(25) 5829-5839 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription