Abstract

The need for the reconstruction and quantification of visualized objects from light microscopy images requires an image formation model that adequately describes the interaction of light waves with biological matter. Differential interference contrast (DIC) microscopy, as well as light microscopy, uses the common model of the scalar Helmholtz equation. Its solution is frequently expressed via the Born approximation. A theoretical bound is known that limits the validity of such an approximation to very small objects. We present an analytic criterion for the validity region of the Born approximation. In contrast to the theoretical known bound, the suggested criterion considers the field at the lens, external to the object, that corresponds to microscopic imaging and extends the validity region of the approximation. An analytical proof of convergence is presented to support the derived criterion. The suggested criterion for the Born approximation validity region is described in the context of a DIC microscope, yet it is relevant for any light microscope with similar fundamental apparatus.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Validity criterion for the Born approximation convergence in microscopy imaging: comment

Xuesong Wang, Jianbing Li, Tao Wang, and Shunping Xiao
J. Opt. Soc. Am. A 28(4) 662-664 (2011)

Validity criterion for the Born approximation convergence in microscopy imaging: reply to comment

Sigal Trattner, Micha Feigin, Hayit Greenspan, and Nir Sochen
J. Opt. Soc. Am. A 28(4) 665-666 (2011)

Image formation of thick three-dimensional objects in differential-interference-contrast microscopy

Sigal Trattner, Eugene Kashdan, Micha Feigin, and Nir Sochen
J. Opt. Soc. Am. A 31(5) 968-980 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription