Abstract

Volume imaging, holography, and conoscopy are methods of recording three-dimensional images. We show that the dependence of the resolution cell size on distance is different for each system and determines the gray-level requirements of the detection and recording system in each case. Expressions are developed for the total number of resolution cells in the observable object volume. This is of interest in determining the total amount of data that must be processed by an electronic imaging system. Tables of performance figures are given for ideal and realistic conditions.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid digital holographic imaging system for three-dimensional dense particle field measurement

Lujie Cao, Gang Pan, Jeremy de Jong, Scott Woodward, and Hui Meng
Appl. Opt. 47(25) 4501-4508 (2008)

Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH)

Mani R. Rai, A. Vijayakumar, and Joseph Rosen
Opt. Express 26(14) 18143-18154 (2018)

Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Elise M. Hall, Brian S. Thurow, and Daniel R. Guildenbecher
Appl. Opt. 55(23) 6410-6420 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription