Abstract

In the context of ray tracing, the extremal nature of optical path lengths has largely been ignored. However, by using this property it is possible to derive the following: If a general ray, specified by its initial position and direction (which are considered as variables), is traced through a system of homogeneous media so that the coordinates of the intercepts with the refracting surfaces are known as power series accurate to a certain order in the initial variables, then the characteristic function of the system (and hence all the geometrical optical information) may be directly determined accurately to twice this order. Subsequently, a routine is devised that allows the power series of the characteristic function of a specified optical system (composed of homogeneous lenses and mirrors) to be computed to arbitrary orders. This routine requires significantly less computing time than the existing programs for analytic (as opposed to numerical) analysis of optical systems.

© 1983 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Weighted order doubling in the computation of chromatic aberration coefficients

G. W. Forbes
J. Opt. Soc. Am. A 1(9) 974-980 (1984)

Concatenation of symmetric systems in Hamiltonian optics

G. W. Forbes and Mark Andrews
J. Opt. Soc. Am. 73(6) 776-781 (1983)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription