Abstract

A new method of evaluating the mutual-coherence function for propagation in a randomly inhomogeneous medium like the atmosphere is presented. The new method, which is highly physical, as distinct from a mathematical approach, does not involve the treatment of any differential equations. Instead, the treatment is based on decomposition of a randomly distorted wavefront into a set of plane waves with random amplitudes. These plane waves constitute orthogonal modes. Propagation in a random medium is treated as the physical process of diffusion of amplitude (or energy) between the modes, and a short-path-propagator function for this diffusion is developed. From the short-path-propagator function, a long-path-propagator function is easily obtained, and from this the mutual-coherence function is computed. Starting from the known short-path mutual-coherence function, which is known to be accurate, the mutual-coherence function for long paths is obtained. The results are in agreement with previous results, all of whose derivations have recently been subject to criticism. Because this derivation is not a mathematical exercise, it should not be subject to any of these or similar criticisms, which were primarily questions of mathematical rigor.

© 1968 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Autocorrelation of Gaussian-Beam Fluctuation Caused by a Random Medium

Yasuaki Kinoshita, Toshimitsu Asakura, and Michio Suzuki
J. Opt. Soc. Am. 58(8) 1040-1047 (1968)

Propagation of the Fourth-Order Coherence Function in a Random Medium*

T. L. Ho and M. J. Beran
J. Opt. Soc. Am. 58(10) 1335-1341 (1968)

Propagation of the Mutual Coherence Function Through Random Media*

Mark J. Beran
J. Opt. Soc. Am. 56(11) 1475-1480 (1966)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription