Abstract

A hybrid optical architecture combining path (circuit) and packet switching can be a good candidate for future optical networks because it exploits the best of both worlds. In this paper, we present a control framework called the Dynamic Optical Wavelength and Flow Allocation Framework (DOWFAF), which can dynamically change the ratio of path and packet wavelengths and the flow size threshold in the hybrid path–packet integrated networks in order to balance the utilization of path and packet subnetworks and maximize the ratio of large flows benefiting from the path switching. We propose an analytical model for calculating the flow size threshold and a feedback control for estimating the wavelength allocation ratio for varying traffic. DOWFAF can be implemented by software-defined networking, which is getting a lot of attention recently. We show that DOWFAF can greatly increase the goodput of large Transmission Control Protocol (TCP) flows for a wide range of traffic, while decreasing the cost and the power consumption.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resource Allocation in Electrical/Optical Hybrid Switching Data Center Networks

Zhangxiao Feng, Weiqiang Sun, Jie Zhu, Junyi Shao, and Weisheng Hu
J. Opt. Commun. Netw. 9(8) 648-657 (2017)

Transport-Layer Control to Increase Throughput in Bufferless Optical Packet-Switching Networks

Pablo Jesus Argibay-Losada, Gokhan Sahin, Kseniia Nozhnina, and Chunming Qiao
J. Opt. Commun. Netw. 8(12) 947-961 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription