Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of fast quality of transmission estimation methods for C + L + S optical systems

Not Accessible

Your library or personal account may give you access

Abstract

Due to the high potential of multi-band transmission (MBT) systems as a short- to medium-term solution to the ever-increasing demand for fiber capacity, one of the recent areas of research concerns the development of fast but still accurate models to estimate the quality of transmission (QoT) in these systems, since this capability will be paramount for efficient and cost-effective network planning and operation. However, accurately evaluating the QoT of MBT systems with moderate computational complexity is challenging, mainly because stimulated Raman scattering (SRS) becomes a major transmission impairment. Although several models have been proposed in the literature, to the best of the authors’ knowledge, there is a lack of a comprehensive comparison of the advantages and main limitations of the available methodologies. Therefore, this work analyzes the computational time and accuracy of several QoT estimation methods suitable for MBT systems [closed-form interchannel SRS Gaussian noise (ISRS-GN) and four-wave mixing (FWM) models], focusing on transmission systems comprising a total transmission bandwidth of up to 20 THz, which includes not only the C- and L-bands but also a part of the complete S-band. We also propose a modification to the FWM model to take into account the SRS effect in the calculation of the nonlinear interference, referred to as the enhanced FWM (eFWM) model. We show that the closed-form ISRS-GN model has the best trade-off between computational complexity (speed) and accuracy for launch powers per channel up to 4 dBm in a system with 10 spans and with span lengths varying from 50 km to 100 km. However, this method shows generalized signal-to-noise ratio estimation errors as high as 1.5 dB for higher launch powers. Similar conclusions were drawn when using the models to optimize the launch powers in the reference Italian backbone network, i.e., using the closed-form ISRS-GN model leads to more accurate optimized launch powers. However, in this case, the impact on the network-wide average channel capacity of using the launch power optimized using the different approaches is negligible.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Improving the accuracy of QoT estimation with insertion loss distribution evaluation for C + L band transmission systems

Jing Zhou, Jianing Lu, and Changyuan Yu
J. Opt. Commun. Netw. 16(1) 12-20 (2024)

On the impact of launch power optimization and transceiver noise on the performance of ultra-wideband transmission systems [Invited]

H. Buglia, E. Sillekens, A. Vasylchenkova, P. Bayvel, and L. Galdino
J. Opt. Commun. Netw. 14(5) B11-B21 (2022)

Benefits of counterpropagating Raman amplification for multiband optical networks

André Souza, Nelson Costa, João Pedro, and João Pires
J. Opt. Commun. Netw. 14(7) 562-571 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.