Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Techniques for applying reinforcement learning to routing and wavelength assignment problems in optical fiber communication networks

Not Accessible

Your library or personal account may give you access

Abstract

We propose a novel application of reinforcement learning (RL) with invalid action masking and a novel training methodology for routing and wavelength assignment (RWA) in fixed-grid optical networks and demonstrate the generalizability of the learned policy to a realistic traffic matrix unseen during training. Through the introduction of invalid action masking and a new training method, the applicability of RL to RWA in fixed-grid networks is extended from considering connection requests between nodes to servicing demands of a given bit rate, such that lightpaths can be used to service multiple demands subject to capacity constraints. We outline the additional challenges involved for this RWA problem, for which we found that standard RL had low performance compared to that of baseline heuristics, in comparison with the connection requests RWA problem considered in the literature. Thus, we propose invalid action masking and a novel training method to improve the efficacy of the RL agent. With invalid action masking, domain knowledge is embedded in the RL model to constrain the action space of the RL agent to lightpaths that can support the current request, reducing the size of the action space and thus increasing the efficacy of the agent. In the proposed training method, the RL model is trained on a simplified version of the problem and evaluated on the target RWA problem, increasing the efficacy of the agent compared with training directly on the target problem. RL with invalid action masking and this training method outperforms standard RL and three state-of-the-art heuristics, namely, $k$ shortest path first fit, first-fit $k$ shortest path, and $k$ shortest path most utilized, consistently across uniform and nonuniform traffic in terms of the number of accepted transmission requests for two real-world core topologies, NSFNET and COST–239. The RWA runtime of the proposed RL model is comparable to that of these heuristic approaches, demonstrating the potential for real-world applicability. Moreover, we show that the RL agent trained on uniform traffic is able to generalize well to a realistic nonuniform traffic distribution not seen during training, thus outperforming the heuristics for this traffic. Visualization of the learned RWA policy reveals an RWA strategy that differs significantly from those of the heuristic baselines in terms of the distribution of services across channels and the distribution across links.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Interpreting multi-objective reinforcement learning for routing and wavelength assignment in optical networks

Sam Nallaperuma, Zelin Gan, Josh Nevin, Mykyta Shevchenko, and Seb J. Savory
J. Opt. Commun. Netw. 15(8) 497-506 (2023)

Routing in optical transport networks with deep reinforcement learning

José Suárez-Varela, Albert Mestres, Junlin Yu, Li Kuang, Haoyu Feng, Albert Cabellos-Aparicio, and Pere Barlet-Ros
J. Opt. Commun. Netw. 11(11) 547-558 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.