Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 6,
  • pp. 1877-1885
  • (2024)

Chaotic Dynamical Enhanced Optical Physical Layer Encryption in OFDM-PON System Based on Echo State Network

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose an optical physical layer encrypted scheme in an orthogonal frequency division multiplexed passive optical network (OFDM-PON) based on a nonlinear dynamical enhanced chaotic system generated by Echo State Network (ESN). The proposed-system gets more complex chaotic behavior using three-dimensional Henon mapping iterative chaotic mapping with infinite collapses (ICMIC) cascade mapping (3-D HICM). ESN generates the sequences that are used to produce the masking vectors to encrypt the bit, constellation and subcarriers, which can resist the degradation of chaotic dynamics. Compared with other networks, ESN can reduce the computational cost by omitting the process of obtaining weights by gradient descent method and randomly generating input and internal weights. Its normalized root mean square error (NRMSE) is less than 0.14. The correlation coefficient (CC) of chaotic sequences by 3-D HICM cascade mapping and ESN is more than 0.99. By comparison, the sensitive value of all sequences increases after generating by ESN. Especially, the sensitive value of the x sequence increases by 8 orders of magnitude, which shows the best improvement effect. The generated 16-quadrature amplitude modulation (16QAM) OFDM signal transmits 126.88 Gb/s data rate across a 2 km fiber span of 7-core fiber. The bit error rate (BER) is analyzed during the experiments, and the results show that the proposed system can improve efficiency and security in OFDM-PON systems.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.