Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 4,
  • pp. 1321-1327
  • (2024)

Co-Propagation of QKD & 6 Tb/s (60 × 100G) DWDM Channels With ∼17 dBm Total WDM Power in Single and Multi-Span Configurations

Not Accessible

Your library or personal account may give you access

Abstract

We report co-propagation experiments of the quantum channel (at 1310 nm) of a Quantum Key Distribution (QKD) system with Dense Wavelength Division Multiplexing (DWDM) data channels in the 1550 nm range. Two configurations are assessed. The first one is a single span configuration where various lengths of Standard Single Mode Fiber (SSMF) (from 20 to 70 km) are used and the total WDM channels power is varied. The Secure Key Rate (SKR) and the Quantum Bit Error Ratio (QBER) are recorded showing that up to ∼17 dBm total power of 30 or 60 channels at 100 Gb/s can coexist with the quantum channel. A metric to evaluate the co-propagation efficiency is also proposed to better evaluate the ability of a QKD system to provide secure keys in a co-propagation regime. The second experiment is a three spans link with a cascade of three QKD systems and two trusted nodes in a 184 km total link length. We report the transmission of a coherent 400 Gb/s Dual Polarization DP-16QAM (Quadrature Amplitude Modulation) channel that transports a QKD secured 100 GbE data stream, with other fifty-four 100 Gb/s WDM channels. Encryption is demonstrated at the same time as co-propagation.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.