Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 1,
  • pp. 339-346
  • (2024)

Thulium-Doped 1940- and 2034-nm Fiber Amplifiers: Towards Highly Efficient, High-Power All-Fiber Laser Systems

Not Accessible

Your library or personal account may give you access

Abstract

We report on high-power thulium-doped fiber amplifiers built using a nanoparticle-doped double-clad, pedestal-style large mode area fiber. The applied nanoparticle doping technique allowed achieving uniform high doping concentrations of Al2O3 and Tm2O3 across the fiber core. The fiber outer layer was fluorine-doped providing a decrease in pump radiation interaction with the coating, thereby enhancing the reliability of the entire laser system under high-power operation. The laser system operating at a wavelength of 2034 nm delivered an output power of up to 441 W with a slope efficiency of 57.4%, and the electro-optical conversion efficiency of the amplifier was 25%. The 1940-nm-wavelength all-fiber amplifier seeded with a narrowband Tm-doped fiber laser provided an output power of up to 273 W with a slope efficiency as high as 61.8%. In both cases the output spectrum was characterized by a 3-dB spectral bandwidth below 160 pm. Moreover, a special splicing procedure for large mode area fibers transmitting high power radiation was proposed and successfully demonstrated.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.