Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 8,
  • pp. 2333-2342
  • (2023)

Sparsity Learning Deep Neural Network Nonlinear Equalization Method for 112Gbps PAM4 Short-Reach Transmission Links

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose and experimentally validate a novel sparsity learning deep neural network nonlinear equalization method (SLDNN-NLM) for a 112-Gbps PAM4 signal using a 25-GHz externally modulated laser (EML) to transmit over 40-km standard single-mode fiber (SSMF) in O-band. Our proposed SLDNN-NLM can reduce computation complexity while still maintain the system performance. This method combines the L2-regularization term into the loss function and adapts the deep neural network (DNN) model by distinguishing the significance of each connection. We next prune away insignificant weight connections using the pruning technique without effectively degrading the system performance. In our experimental validation, we compare the system performance and computation complexity of our approach with conventional deep neural network based nonlinear equalizer (CDNN-NLE), L2-regularized Volterra nonlinear equalizer (L2VNLE), sparse CDNN-NLE, and sparse L2VNLE. The experimental findings imply that the proposed method has great potential to deal with nonlinear distortions arisen from the optical transmission systems. Our results show that the proposed SLDNN-NLM with L2-regularization achieves better BER performance than CDNN-NLE at the same complexity level. Moreover, when comparing with L2VNLE, the computation complexity is reduced by 42% at each received optical power (ROP) after 40-km SSMF transmission. Compared with L2VNLE, CDNN-NLE, sparse L2VNLE, and sparse CDNN-NLE, the overall complexity of the proposed SLDNN-NLM after pruning can be reduced by 86%, 75%, 70%, and 61% for BTB at an ROP of −3dBm, and 79%, 63%, 58%, and 57% for 40-km transmission at an ROP of −5 dBm, respectively, without degrading the system performance.

PDF Article
More Like This
Computation efficient sparse DNN nonlinear equalization for IM/DD 112 Gbps PAM4 inter-data center optical interconnects

Govind Sharan Yadav, Chun-Yen Chuang, Kai-Ming Feng, Jyehong Chen, and Young-Kai Chen
Opt. Lett. 46(9) 1999-2002 (2021)

Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF

Zhiquan Wan, Jianqiang Li, Liang Shu, Ming Luo, Xiang Li, Songnian Fu, and Kun Xu
Opt. Express 26(8) 10631-10642 (2018)

Low-complexity sparse absolute-term based nonlinear equalizer for C-band IM/DD systems

Junwei Zhang, Zhenrui Lin, Xiong Wu, Jie Liu, Alan Pak Tao Lau, Changjian Guo, Chao Lu, and Siyuan Yu
Opt. Express 29(14) 21891-21901 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.