Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 6,
  • pp. 1734-1741
  • (2023)

Recurrent Neural Network Based Joint Equalization and Decoding Method for Trellis Coded Modulated Optical Communication System

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a joint equalization and decoding method based on recurrent neural networks (RNNs) is proposed for trellis coded modulation (TCM) systems. For traditional methods based on concatenated equalizers and Viterbi decoder, the information may be lost between the equalization and decoding. However, our proposed joint method can obtain the information bits directly from the received symbols and the error also can be corrected in iterations. In two-dimensional eight-level pulse amplitude modulation (2D-PAM8) links, we experimentally demonstrate that, compared with the traditional method based on Volterra filter and Viterbi decoder, the proposed joint method based on RNNs with similar complexity can achieve bit-error rate (BER) performance improvements of 1 dB, 1 dB, and 2 dB in 87.5 Gb/s, 100 Gb/s, and 112.5 Gb/s transmissions at 7% hard-decision forward-error-correction (HD-FEC) limit, respectively. For the 10 km standard single-mode fiber (SSMF) link at 87.5 Gb/s, the traditional method cannot get the BER below the 7% HD-FEC limit whereas the joint RNNs method with similar complexity can get the BER below the 7% HD-FEC limit. As the nonlinearity increases, the proposed joint method can achieve greater improvement of BER performance.

PDF Article
More Like This
Computationally efficient 104 Gb/s PWL-Volterra equalized 2D-TCM-PAM8 in dispersion unmanaged DML-DD system

Yan Fu, Deming Kong, Meihua Bi, Haiyun Xin, Shi Jia, Kuo Zhang, Weisheng Hu, and Hao Hu
Opt. Express 28(5) 7070-7079 (2020)

Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system

Xinyu Liu, Yongjun Wang, Xishuo Wang, Hui Xu, Chao Li, and Xiangjun Xin
Opt. Express 29(4) 5923-5933 (2021)

Cascade recurrent neural network-assisted nonlinear equalization for a 100 Gb/s PAM4 short-reach direct detection system

Zhaopeng Xu, Chuanbowen Sun, Tonghui Ji, Jonathan H. Manton, and William Shieh
Opt. Lett. 45(15) 4216-4219 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.