Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 3,
  • pp. 832-840
  • (2023)

Fully Integrated Solid-State LiDAR Transmitter on a Multi-Layer Silicon-Nitride-on-Silicon Photonic Platform

Not Accessible

Your library or personal account may give you access

Abstract

We report a LiDAR transmitter incorporating both a hybrid-integrated tunable external cavity laser and a high-resolution 2-D optical phased array beam-steerer. Widely tunable single-mode lasing over a span of approximately 100 nm is achieved with >42 dB side-mode-suppression-ratio, 18 mW output power, and 2.8 kHz linewidth. Two-dimensional beam steering in a field-of-view of 140° × 16° exhibits a beam divergence of 0.051° × 0.016° measured in full width at half maximum. Leveraging the low propagation loss, negligible nonlinear loss, and low thermal sensitivity of silicon nitride, and combining the high mode confinement and efficient thermal tuning of silicon, the device affirms the feasibility of high-power on-chip lasing, power bottleneck elimination, and low on-chip insertion loss. It represents the first demonstration of a fully integrated LiDAR transmitter on the multi-layer silicon-nitride-on-silicon photonic platform, revealing the potential of complementary integration in the effort toward a LiDAR transmitter of sufficient optical power budget.

PDF Article
More Like This
Coherent solid-state LIDAR with silicon photonic optical phased arrays

Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan Raval, Diedrik Vermeulen, and Michael R. Watts
Opt. Lett. 42(20) 4091-4094 (2017)

High-performance optical phased array for LiDARs demonstrated by monolithic integration of polymer and SiN waveguides

Eun-Su Lee, Jinung Jin, Kwon-Wook Chun, Sang-Shin Lee, and Min-Cheol Oh
Opt. Express 31(17) 28112-28121 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.