Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 24,
  • pp. 7424-7431
  • (2023)

Multiple-Pass Enhanced Group Delay Measurement Scheme of FBG Based on Optical Low-Coherence Reflectometry

Not Accessible

Your library or personal account may give you access

Abstract

We propose an enhanced multiple-pass group delay (GD) measurement scheme of fiber-Bragg grating (FBG) based on optical low-coherence reflectometry (OLCR). The fiber loop embedded with the measured FBG is innovatively applied to the OLCR-based system, and the probe signal light can go through the FBG repeatedly. In the multiple-pass propagation of light, the FBG-induced GD or chromatic dispersion is amplified. After the straightforward reduction, the GD of FBG can be recovered accurately. And the triple-pass measurements are demonstrated in detail. Compared to the conventional single-pass scheme, the repeatability of GD in our measurements (<0.4 ps) is improved more than 2 times. The multiple-pass scheme can be expected to break the limit of the GD resolution in the existing FBG measurement methods. In addition, using the polarization controllers (PC) in the fiber loop, the weak polarization differential group delay (DGD) or polarization mode dispersion (PMD) of FBG is measured and discussed. It should be interesting to the characterization of the ultraviolet (UV) or mechanical induced birefringence in photosensitive optical fibers. The multiple-pass measurement scheme of FBG could also be expected to realize two-parameter sensing.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.