Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 24,
  • pp. 7318-7327
  • (2023)

A Three-Phase Modularization Approach of OXC for Large-Scale ROADM

Not Accessible

Your library or personal account may give you access

Abstract

In recent years, multiple optical fibers are installed on each optical link to deal with the surge of Internet traffic, which calls for large-scale reconfigurable optical add/drop multiplexers (ROADMs). However, the scalability of the standard optical cross-connect (OXC), the key component of ROADM, is limited by the port count of commercial wavelength selective switches (WSSs). The theory of Clos network could be used to design a scalable OXC, but it will lead to a large insertion loss (∼30 dB). To address this issue, we propose a three-phase approach to construct a modular OXC network. Starting from a classical OXC, phase 1 decomposes each WSS in the input and output stages into a two-stage cascaded structure of WSSs, based on which phase 2 factorizes the shuffle network between the inputs and the outputs of the original OXC into the interconnection of small-size shuffle networks. Phase 3 combines the small-size shuffle networks together with the small-size WSSs to form small-size OXC modules. As a result, we obtain a modular OXC network, which is an interconnection of small-size OXCs. The modular OXC network is a strictly nonblocking and flex-grid optical switching fabric and has ∼20-dB insertion loss. At last, we experimentally evaluate the transmission performance of modular OXC network and discuss the related issues when it is deployed in a ROADM.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.