Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 23,
  • pp. 7128-7138
  • (2023)

Integration of Sensing and Communication in a W-Band Fiber-Wireless Link Enabled by Electromagnetic Polarization Multiplexing

Not Accessible

Your library or personal account may give you access

Abstract

The coexistence needs of sensing and communication in millimeter-wave (mmW) bands have urgently driven the seamless integration of sensing and communication in the upcoming mmW era. However, the time-frequency competition between the two functions makes it difficult to accommodate both high sensing resolution and large communication capacity. In this article, we have designed a W-band fiber-wireless link with the integrated sensing and communication functions enabled by electromagnetic polarization multiplexing. The ultra-wideband fiber-wireless link in W band is enabled by the asymmetrical single-sideband modulation along with the optical heterodyne up-conversion. The electromagnetic polarization multiplexing allocates the sensing and communication functions on two orthogonal electromagnetic polarizations, respectively. Thus, all time-frequency resources of the fiber-wireless link can simultaneously serve these two functions without any resource competition, contributing to an ultra-high spatial resolution and an ultra-large data capacity at the same time. Our experimental results show the spatial resolution of up to 15 mm and data rate as high as 92 Gbit/s were simultaneously realized in W band after delivering over a 10.8-m wireless distance. The overall improvement of both the sensing and communication performance, to the best of our knowledge, led to a record capacity-resolution quotient of 61.333 Gbit/s/cm. In addition, we have qualitatively investigated the integrated sensing and communication fiber-wireless link, in terms of the carrier frequency, system bandwidth, multi-mmW access, and electromagnetic polarization crosstalk.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.