Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 21,
  • pp. 6723-6734
  • (2023)

Demonstration of Large Mode-Hop-Free Tuning in Narrow-Linewidth Heterogeneous Integrated Laser

Open Access Open Access

Abstract

Continuously tunable lasers with a narrow linewidth are at the core of a large number coherent optical systems. Integration of these devices on a single chip will enable a large number of applications that require minimal size, weight, power, and cost. In this work, we demonstrate a 3 nm-continuously tunable laser operating around 1550 nm with a narrow intrinsic linewidth of 5.7 kHz. The device is fully integrated on a silicon-on-insulator platform and the optical gain is provided by a bonded III-V layer. The narrow laser linewidth is attained with an extended cavity that consists of a Vernier ring-based mirror and a passive waveguide. To reach the record continuous (mode-hop-free) tuning range of 3 nm (375 GHz), we demonstrate a method for synchronously tuning the Vernier resonances together with the cavity longitudinal modes, both thermally controlled. In the current laser, the mode-hop-free tuning range is limited by the maximum heating power, but it can be extended over more than 10 nm (1.25 THz) by optimizing the integrated heater design.

PDF Article

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.