Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 19,
  • pp. 6225-6234
  • (2023)

Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC

Not Accessible

Your library or personal account may give you access

Abstract

To keep pace with increasing data rates in the worldwide communication networks and the increased bandwidths requirements in measurement devices, sensors, radar, and many other applications, photonics-assisted analog-to-digital converters (PADCs) may be promising alternatives to circumvent the bandwidth bottleneck in pure electronic analog-to-digital converters (EADCs). Here we analyze optical sub-Nyquist orthogonal sampling with sinc-pulse sequences for the time-interleaving of high-bandwidth input signals into parallel low-bandwidth sub-signals (first sampling stage). These sub-signals are then detected and further processed with low-bandwidth electronic devices in parallel branches (second sampling stage). Orthogonal sampling with ideal devices is error-free. Additionally, in contrast to electronic sample and hold circuits, the first sampling stage is based on a multiplication and not a switching. Therefore, it adds no aperture jitter and the low jitter of today's oscillators can be directly transferred to the sampling of high-bandwidth signals. Compared to the direct detection, in simulations and a proof of concept experimental demonstration, we show around 8.5 dB signal-to-noise and distortion (SINAD) and 1.4 bit effective number of bits (ENOB) improvement for the detection of a 14.5 GHz signal with the proposed method in a three-branch system. With further simulations we analyze the possibilities and limits of the method and derive an equation for the resolution. In a nine-branch system with a jitter of 10 fs for the oscillator and 100 fs for the electronics, 100 GHz input signals can be processed with a resolution of 6 bit in 11 GHz electronics, for instance. The scheme is only based on a modulator and standard RF equipment. Therefore, integration into a single chip, together with the following electronic ADCs is straightforward.

PDF Article
More Like This
Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter

Guang Yang, Weiwen Zou, Lei Yu, Kan Wu, and Jianping Chen
Opt. Express 24(21) 24061-24074 (2016)

Investigation of electronic aperture jitter effect in channel-interleaved photonic analog-to-digital converter

Guang Yang, Weiwen Zou, Lei Yu, Na Qian, and Jianping Chen
Opt. Express 27(6) 9205-9214 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.