Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 17,
  • pp. 5599-5606
  • (2023)

Integration of Self-Adaptive Physical-Layer Key Distribution and Encryption in Optical Coherent Communication

Not Accessible

Your library or personal account may give you access

Abstract

We propose and experimentally demonstrate a compatible physical-layer secure optical communication (PLSOC) system that integrates self-adaptive physical-layer key distribution (PLKD) and encryption (PLE) in optical coherent communication. Based on bit error rate difference of QAM signals mapped by asymmetric basis state Y-00 protocol, the secret key can be secretly exchanged over public fiber links without the pre-shared keys. Moreover, we perform a parameter self-adaptive strategy for practical and dynamic PLKD. The security of the key is evaluated in the case of a fiber-tapping attack. A secure hash algorithm, SHA3-512, is used to perform privacy amplification to obtain the virtually secure key. An error-free PLKD rate reaches 39.3 Kbits/s over 300 km ultra-low loss fiber. We experimentally enable the integration of the proposed PLKD scheme and quantum noise stream cipher (QNSC) with a single wavelength, same system. Q factor penalty of the integration system compared to the QNSC system is 3.7 dB (optical back-to-back) and 4.8 dB (300 km) respectively. By exploiting a common hardware platform, with the same wavelength, the proposed PLSOC system addresses the problem that PLKD and PLE are separately performed through independent optical fiber links or wavelengths. Since only digital signal processing is used, the scheme does not require extra hardware.

PDF Article
More Like This
Traceless encryption approach for physical layer security in coherent optical communications system

Zan-Shan Zhao, Pei-Li Li, and Wei-Ming Gan
Opt. Express 31(8) 12585-12596 (2023)

32 Gb/s physical-layer secure optical communication over 200 km based on temporal dispersion and self-feedback phase encryption

Zhensen Gao, Qihua Li, Lihong Zhang, Bin Tang, Ying Luo, Xulin Gao, Songnian Fu, Zhaohui Li, Yuncai Wang, and Yuwen Qin
Opt. Lett. 47(4) 913-916 (2022)

Physical layer security scheme for key concealment and distribution based on carrier scrambling

Zongheng Weng, Jianxin Ren, Bo Liu, YaYa Mao, Xiangyu Wu, Xiumin Song, Shuaidong Chen, Yiming Ma, Nan Zhao, Yongyi Yu, and Yongfeng Wu
Opt. Express 32(9) 15053-15064 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.