Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 16,
  • pp. 5394-5404
  • (2023)

Red InGaN Micro-LEDs on Silicon Substrates: Potential for Multicolor Display and Wavelength Division Multiplexing Visible Light Communication

Not Accessible

Your library or personal account may give you access

Abstract

Red micro light-emitting diodes (micro-LEDs) on silicon substrates are crucial for the realization of large-scale, high-quality, low-cost micro-LED displays, and are also beneficial for high-speed visible light communication (VLC). In this letter, micro-LEDs with different sizes were fabricated. The maximum light output power density of the 20 μm pixel can reach 3.36 W/cm2, which is 14 times higher than that of the largest pixel (150 μm). By adjusting the pixel size and injection current, a direct color shift from red to green can be observed. Moreover, multicolor emission with uniform brightness can be realized by adjusting duty cycle, which has broad application prospect in monolithic, multicolor displays. Despite the significant blue shift phenomenon, the peak wavelength of all pixels is still greater than 630 nm at the current density of 100 A/cm2, which means that red light can be emitted in a large current density range to meet various application scenarios requiring different driving conditions. We have realized red, yellow and green micro-LED transmitters on Si substrate by changing the driving current density and modulation bandwidth up to 533.15 MHz is achieved when emitting green light. This is the report of red-emission micro-LEDs on Si substrates for visible light communication for the first time. And we proposed a proof-of-concept monolithic, multicolor wavelength division multiplexing scheme that achieved a total allowable transmission data rate of 2.35 Gbps. Such micro-LED is expected to be applied in multicolor displays, high-speed multi-channel VLC, color-tunable light sources, etc. In particular, due to its high integration and miniaturization, it is expected to be used in future practical application scenarios such as wearable communication devices and smartwatches.

PDF Article
More Like This
Vertical stack integration of blue and yellow InGaN micro-LED arrays for display and wavelength division multiplexing visible light communication applications

Zhou Wang, Zuxin Jin, Runze Lin, Shijie Zhu, Xinyi Shan, Grzegorz Stepniak, Xugao Cui, and Pengfei Tian
Opt. Express 30(24) 44260-44269 (2022)

High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing

Shijie Zhu, Pengjiang Qiu, Xinyi Shan, Runze Lin, Zhou Wang, Zuxin Jin, Xugao Cui, Guoqi Zhang, and Pengfei Tian
Photon. Res. 10(8) 1892-1899 (2022)

High-efficiency InGaN red micro-LEDs for visible light communication

Yu-Ming Huang, Chun-Yen Peng, Wen-Chien Miao, Hsin Chiang, Tzu-Yi Lee, Yun-Han Chang, Konthoujam James Singh, Z. Daisuke Iida, Ray-Hua Horng, Chi-Wai Chow, Chien-Chung Lin, Kazuhiro Ohkawa, Shih-Chen Chen, and Hao-Chung Kuo
Photon. Res. 10(8) 1978-1986 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.