Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 12,
  • pp. 3783-3790
  • (2023)

Hardware-Efficient Duobinary Neural Network Equalizers for 800 Gb/s IM/DD PAM4 Transmission Over 10 km SSMF

Not Accessible

Your library or personal account may give you access

Abstract

In this article, we discuss challenges and options for scaling IM/DD transceivers towards 800 Gbps. Our focus is CWDM4 PAM4 transmission and our target distance is 10 km in O-band, which is a most urgent use case for next generation optical short reach systems like data centre interconnects and networks. At this reach and rate, chromatic dispersion (CD) becomes the main challenge. Its mitigation is essential and primarily done with digital signal processing. State of the art techniques, however, make transceivers quickly too complex. We show upon measurement results how neural network equalization can meet Volterra equalization performance with 30% less hardware multiplier complexity. When also applying magnitude weight pruning, an additional 43% reduction is possible without performance loss across all CWDM4 lanes. If needed, an added MLSE stage can further push performance in both cases. In any of these configurations, a key enabler against strong CD penalties is duobinary training, which is applicable to all feed-forward equalization architectures.

PDF Article
More Like This
Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF

Zhiquan Wan, Jianqiang Li, Liang Shu, Ming Luo, Xiang Li, Songnian Fu, and Kun Xu
Opt. Express 26(8) 10631-10642 (2018)

56-Gb/s/λ C-band DSB IM/DD PAM-4 40-km SSMF transmission employing a multiplier-free MLSE equalizer

Zhuo Chen, Junyuan Nie, Shenmao Zhang, Qi Yang, Xiaoxiao Dai, Lei Deng, Mengfan Cheng, and Deming Liu
Opt. Express 30(7) 11275-11287 (2022)

Radial basis function neural network enabled C-band 4 × 50  Gb/s PAM-4 transmission over 80  km SSMF

Zheng Yang, Fan Gao, Songnian Fu, Xiang Li, Lei Deng, Zhixue He, Ming Tang, and Deming Liu
Opt. Lett. 43(15) 3542-3545 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.