Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 11,
  • pp. 3522-3532
  • (2023)

High Dynamic Range 100G PON Enabled by SOA Preamplifier and Recurrent Neural Networks

Open Access Open Access

Abstract

In recent years the PON research community has focused on future systems targeting 100 Gb/s/ $\lambda$ and beyond, with digital signal processing seen as a key enabling technology. Spectrally efficient 4-level pulse amplitude modulation (PAM4) is seen as a cost-effective solution that exploits the ready availability of cheaper, low-bandwidth devices, and Semiconductor Optical Amplifiers (SOA) are being investigated as receiver preamplifiers to compensate PAM4’s high signal-to-noise ratio requirements and meet the demanding 29 dB PON loss budget. However, SOA gain saturation-induced patterning distortion is a concern in the context of PON burst-mode signalling, and the 19.5 dB loud-soft packet dynamic range expected by the most recent ITU-T 50G standards. In this article we propose a recurrent neural network equalisation technique based on gated recurrent units (GRU-RNN) to not only mitigate SOA patterning affecting loud packet bursts, but to also exploit their remarkable effectiveness at compensating non-linear impairments to unlock the SOA gain saturated regime. Using such an equaliser we demonstrate $ > 28$ dB system dynamic range in 100 Gb/s PAM4 system by using SOA gain compression in conjunction with GRU-RNN equalisation. We find that our proposed GRU-RNN has similar equalisation capabilities as non-linear Volterra, fully connected neural network, and long short-term memory based equalisers, but observe that feedback-based RNN equalisers are more suited to the varying levels of impairment inherent to PON burst-mode signalling due to their low input tap requirements. Recognising issues surrounding hardware implementation of RNNs, we investigate a multi-symbol equalisation scheme to lower the feedback latency requirements of our proposed GRU-RNN. Finally, we compare equaliser complexities and performances according to trainable parameters and real valued multiplication operations, finding that the proposed GRU-RNN equaliser is more efficient than those based on Volterra, fully connected neural networks or long short-term memory units proposed elsewhere.

PDF Article
More Like This
SOA pattern effect mitigation by neural network based pre-equalizer for 50G PON

Lei Xue, Lilin Yi, Rui Lin, Luyao Huang, and Jiajia Chen
Opt. Express 29(16) 24714-24722 (2021)

Low-complexity Volterra-inspired neural network equalizer in 100-G band-limited IMDD PON system

Luyao Huang, Wenqing Jiang, Yongxing Xu, Weisheng Hu, and Lilin Yi
Opt. Lett. 47(21) 5692-5695 (2022)

Cascade recurrent neural network-assisted nonlinear equalization for a 100 Gb/s PAM4 short-reach direct detection system

Zhaopeng Xu, Chuanbowen Sun, Tonghui Ji, Jonathan H. Manton, and William Shieh
Opt. Lett. 45(15) 4216-4219 (2020)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.