Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 11,
  • pp. 3261-3277
  • (2023)

End-to-End Learning for VCSEL-Based Optical Interconnects: State-of-the-Art, Challenges, and Opportunities

Not Accessible

Your library or personal account may give you access

Abstract

Optical interconnects (OIs) based on vertical-cavity surface-emitting lasers (VCSELs) are the main workhorse within data centers, supercomputers, and even vehicles, providing low-cost, high-rate connectivity. VCSELs must operate under extremely harsh and time-varying conditions, thus requiring adaptive and flexible designs of the communication chain. Such designs can be built based on mathematical models (model-based design) or learned from data (machine learning (ML) based design). Various ML techniques have recently come to the forefront, replacing individual components in the transmitters and receivers with deep neural networks. Beyond such component-wise learning, end-to-end (E2E) autoencoder approaches can reach the ultimate performance through co-optimizing entire parameterized transmitters and receivers. This tutorial paper aims to provide an overview of ML for VCSEL-based OIs, with a focus on E2E approaches, dealing specifically with the unique challenges facing VCSELs, such as the wide temperature variations and complex models.

PDF Article
More Like This
Deep learning based end-to-end visible light communication with an in-band channel modeling strategy

Zhongya Li, Jianyang Shi, Yiheng Zhao, Guoqiang Li, Jiang Chen, Junwen Zhang, and Nan Chi
Opt. Express 30(16) 28905-28921 (2022)

Deep-learning-based multi-user framework for end-to-end fiber-MMW communications

Zhongya Li, Junlian Jia, Guoqiang Li, Boyu Dong, Wangwei Shen, Changle Huang, Jianyang Shi, Nan Chi, and Junwen Zhang
Opt. Express 31(10) 15239-15255 (2023)

Memory-aware end-to-end learning of channel distortions in optical coherent communications

Vladislav Neskorniuk, Andrea Carnio, Domenico Marsella, Sergei K. Turitsyn, Jaroslaw E. Prilepsky, and Vahid Aref
Opt. Express 31(1) 1-20 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.