Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 3,
  • pp. 797-804
  • (2022)

Highly Efficient Fiber Optic Thermal Heating Device Based on Turn-Around-Point Long Period Gratings

Not Accessible

Your library or personal account may give you access

Abstract

The use of in-fiber core-to-cladding coupling components for thermal heating purposes has been well assessed in the last decades within the development of fiber optic devices for flow measurements and water thermal conductivity calculation. In these devices, light travelling in the fiber core is transferred into the cladding and absorbed by a metallic layer surrounding the fiber, with the consequent resistive heating generation. Here we demonstrate the use of a Turn-Around-Point (TAP) Long Period Grating (LPG) as resonant core-to-cladding light coupling mechanism for the fabrication of a highly efficient heating device based on metallic coated Fiber Bragg Grating (FBG). A properly designed TAP LPG was fabricated by means of point-to-point UV laser and spliced to a 150 nm thick Au-coated FBG. The heating efficiency characterization of the final device was analyzed, in both air and water, by evaluating the temperature increase in the gold layer surrounding the FBG at incremental values of the injected power. Collected results confirm that the use of LPGs involving the excitation of higher order cladding modes provides an excellent transferring mechanism of the fiber core light into the cladding, which in turn guarantees very high thermal heating efficiency to the final device. Moreover, by comparing such results with the performance of other in-fiber core-to-cladding coupling components already presented in literature, it was found that the TAP LPG-based device exhibits an actuation efficiency 2.5 times greater, thus resulting the most effective and highly performing solution for energy transfer to the metallic overcoat.

PDF Article
More Like This
Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser

Rebecca Y. N. Wong, Edmond Chehura, Stephen E. Staines, Stephen W. James, and Ralph P. Tatam
Appl. Opt. 53(21) 4669-4674 (2014)

Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam
J. Opt. Soc. Am. B 25(6) 897-902 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.