Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 21,
  • pp. 7106-7116
  • (2022)

Intra-Channel Nonlinearity Mitigation in Optical Fiber Transmission Systems Using Perturbation-Based Neural Network

Not Accessible

Your library or personal account may give you access

Abstract

In this work, a perturbation-based neural network (P-NN) scheme with an embedded bidirectional long short-term memory (biLSTM) layer is investigated to compensate for the Kerr fiber nonlinearity in optical fiber communication systems. Numerical simulations have been carried out in a 32-Gbaud dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM) transmission system. It is shown that this P-NN equalizer can achieve signal-to-noise ratio improvements of ∼1.37 dB and ∼0.80 dB, compared to the use of a linear equalizer and a single step per span (StPS) digital back propagation (DBP) scheme, respectively. The P-NN equalizer requires lower computational complexity and can effectively compensate for intra-channel nonlinearity. Meanwhile, the performance of P-NN is more robust to the distortion caused by equalization enhanced phase noise (EEPN). Furthermore, it is also found that there exists a tradeoff between the choice of modulation format and the nonlinear equalization schemes for a given transmission distance.

PDF Article
More Like This
Joint intra and inter-channel nonlinear compensation scheme based on improved learned digital back propagation for WDM systems

Xinyu Chi, Chenglin Bai, Fan Yang, Qi Qi, Ruohui Zhang, Hengying Xu, Lishan Yang, Wanxiang Bi, Tianchi Chen, and Shunchang Bai
Opt. Express 32(4) 5095-5116 (2024)

Joint intra and inter-channel nonlinearity compensation based on interpretable neural network for long-haul coherent systems

Du Tang, Zhen Wu, Zhongliang Sun, Xizi Tang, and Yaojun Qiao
Opt. Express 29(22) 36242-36256 (2021)

Fast fiber nonlinearity compensation method for PDM coherent optical transmission systems based on the Fourier neural operator

Junling Huang, Anlin Yi, Lianshan Yan, Xingchen He, Lin Jiang, Hui Yang, Bin Luo, and Wei Pan
Opt. Express 32(2) 2245-2256 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.